
EigenfunctionEigenfunction correlation, random correlation, random 
matrix theory and superconductivity matrix theory and superconductivity 

near the Anderson transition near the Anderson transition 

V.E.Kravtsov

Collaboration:
E. Cuevas (Murcia ), L.Ioffe, 

E.Yuzbashian (Rutgers)             
M.Feigelman (Landau Inst.) 

Discussion: B.Altshuler , 
I.Lerner,

O. Yevtushenko



TwoTwo--eigenfunctioneigenfunction correlation correlation 
functionfunction
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Why to bother?Why to bother?
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Matrix elements of 
local interactions,

e.g. local attraction in 
superconductivity



Modification of states with Modification of states with 
increasing disorderincreasing disorder

L

disorder

Critical  states Localized
states

Extended states

How do the matrix 
elements change ?



The (standard) Anderson modelThe (standard) Anderson model
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Shows localization for sufficiently 
strong disorder but difficult to treat 
both analytically and numerically  



Scaling theory of localization: what Scaling theory of localization: what 
it is about and what it ignores?it is about and what it ignores?
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Extended, localized and critical Extended, localized and critical 
eigenstateseigenstates

Critical multifractal
states

Localized
states
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Extended states
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Why Why multimulti--fractal?fractal?
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MultifractalMultifractal metal and insulatormetal and insulator

Multifractal insulator Multifractal metal

Localization/correlation length  ξ  is much larger than 
the minimal length scale for fractality l0

Fractal texture persists in the 
metal and insulator



How do we know that?How do we know that?

Critical features in the Critical features in the 
eigenfunctioneigenfunction correlationcorrelation



Ideal metal and insulatorIdeal metal and insulator
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Critical enhancement of Critical enhancement of 
correlations correlations 
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Amplitude higher than in 
a metal but almost full 

overlap

States  far away in energy are strongly correlated



ChalkerChalker’’ss scaling:scaling:
μ
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SelfSelf--avoiding of avoiding of eigenfunctionseigenfunctions at at 
E>E>EEoo

Overlap is smaller than 
for uncorrelated 
eigenfunctions

0|'| EEE >−



Stratification of spaceStratification of space
Each shell consists of  

resonance sites for which 
|E-E’|<V

For W = (δEn) > V there are 
more than one shell which 
avoid each other in space

Intra-shell states overlap almost 
like in metal: enhancement of 
C(ω) at ω < bandwidth =E0

Inter-shell states avoid each 
other: C(ω) rapidly decreases 

for ω > E0.



From critical to offFrom critical to off--
critical statescritical states



TwoTwo--eigenfunctioneigenfunction correlation in 3D correlation in 3D 
Anderson model (metal)Anderson model (metal)

Ideal metal: ξ< l 0

ξδ 0E

New length 
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Dynamical length scaleDynamical length scale
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TwoTwo--eigenfunctioneigenfunction correlation in 3D correlation in 3D 
Anderson model (insulator)Anderson model (insulator)

No ideal 
insulator even 
for very strong 

disorder!

Critical 
region



TwoTwo--eigenfunctioneigenfunction correlation in 1D correlation in 1D 
Anderson model (insulator)Anderson model (insulator)

Ideal 
insulator for 
sufficiently 

strong 
disorder



1D localization is 1D localization is 
qualitatively different qualitatively different 
from 3D localizationfrom 3D localization



Repulsion of centers of localizationRepulsion of centers of localization
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Resonance enhancement of overlapResonance enhancement of overlap
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An effect similar to MottAn effect similar to Mott’’s s 
law in the frequencylaw in the frequency--

dependent conductivitydependent conductivity
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At d=1 repulsion of centers 
of localization and the 

resonance enhancement of 
overlap compensate each 

other

1)( =ωNC

At d>1 resonance 
enhancement prevails
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Averaged matrix elements of 
interaction are enhanced



SummarySummary

MultifractalityMultifractality of critical of critical eigenfunctionseigenfunctions
Persistence of Persistence of multifractalmultifractal texture in a metal and in an texture in a metal and in an 
insulator phaseinsulator phase
Critical power law and Critical power law and ChalkerChalker’’ss scalingscaling
Critical enhancement of Critical enhancement of eigenfunctioneigenfunction correlations at correlations at 
small energy separationssmall energy separations
EigenfunctionEigenfunction mutual avoiding at large energy mutual avoiding at large energy 
separationsseparations
Stratification of coordinate spaceStratification of coordinate space
Logarithmic enhancement of correlations in 2D and 3D Logarithmic enhancement of correlations in 2D and 3D 
insulatorsinsulators



Random matrix Random matrix 
theoriestheories



Ideal extended states: classic Ideal extended states: classic 
WignerWigner--Dyson RMTDyson RMT
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Ideal localized states: random Ideal localized states: random 
diagonal matrixdiagonal matrix
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Random matrix ensembles with Random matrix ensembles with multifractalmultifractal
eigenstateseigenstates: critical statistics: critical statistics
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Anderson transition and Anderson transition and 
multifractalitymultifractality at higher dimensionsat higher dimensions
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Weak 
fractality

Strong 
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0.53D 
Anderson, 
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Eigenstates are multifractal
at all values of b

?∞→d



Signature of Signature of multifractalitymultifractality
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b=0.38

b=0.16

b=0.07

Spectral statisticsSpectral statistics



Critical Critical EigenfunctionEigenfunction correlation: correlation: 
3D Anderson model vs. RMT3D Anderson model vs. RMT

Mobility edge: b=0.42, 
potential disorder



RandomRandom--matrix theory for 3D matrix theory for 3D 
multifractalmultifractal insulatorinsulator
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B controls localization 
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MultifractalMultifractal insulator: RMT vs. 3D insulator: RMT vs. 3D 
Anderson modelAnderson model

B=5, b=0.42



Possible RMT for a Possible RMT for a multifractalmultifractal
metalmetal
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MultifractalMultifractal metal: 3D Anderson metal: 3D Anderson vsvs
RMTRMT



ConclusionConclusion

Random matrix models for ideal extended Random matrix models for ideal extended 
and localized statesand localized states
Critical random matrix model with Critical random matrix model with 
multifractalmultifractal eigenstateseigenstates
Random matrix models for a Random matrix models for a multifractalmultifractal
metal and an insulator: good description metal and an insulator: good description 
of the offof the off--critical statescritical states



Those RMT are generators Those RMT are generators 
of nonof non--trivial singletrivial single--

particle particle eigenststeseigenststes to be to be 
used as a basis to treat used as a basis to treat 

electron interaction.electron interaction.



Cooper instability near Cooper instability near 
the Anderson transitionthe Anderson transition



Anderson Anderson vsvs AndersonAnderson
Anderson theorem:  Tc does not depend on concentration of 

nonmagnetic impurities
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What to do when What to do when ΔΔ(r(r) significantly ) significantly 
depends on r ?depends on r ?

At T=Tc the operator K acquires the eigenvalue 1 
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The new MF equation:The new MF equation:
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How good is the approximation?How good is the approximation?
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Solution to the MF equationSolution to the MF equation
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How robust in the MF How robust in the MF 
result?result?

Other approachesOther approaches



Anderson spin representation of 
superconducting Hamiltonian
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Superconducting transition temperature
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MFA MFA vsvs virialvirial expansionexpansion
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MFA: neglecting thermal fluctuations and non-local spacial fluctuations

Virial expansion: neglecting higher-order terms of virial expansion 

Good agreement of results of different approximations

Virial:



MF MF vsvs VirialVirial in the insulatorin the insulator

virial

MFA

Virial expansion is probably closer to 
Tc of global phase coherence 
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Enhancement of Enhancement of TTcc near the near the 
Anderson transitionAnderson transition

cT

extended one-
particle states

localized 
one-particle 

states
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Possibly realizable 
in cold atoms in 
imperfect optical 
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SuperconductorSuperconductor--Insulator transition: percolation Insulator transition: percolation 
without granulationwithout granulation
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Only states in the 
strip ~Tc near the 
Fermi level take part 
in superconductivity


