

Markus Buttiker University of Geneva

IV-th Windsor Summer School on Condensed Matter Theory, organized by B. Altshuler, P. Littlewood and J. von Delft. Cumberland Lodge, Windsor Royal Park, Windsor, UK, 06 -19 August, 2007.

Shot Noise: Multi-terminal

Mesoscopic conductor with N contacts

At kT = 0,

$$S = \begin{pmatrix} s_{11} & s_{12} & s_{13} & \dots & s_{1N} \\ s_{21} & s_{22} & s_{23} & \dots \\ s_{31} & s_{32} & s_{33} \\ \vdots & \vdots & & s_{NN} \end{pmatrix}$$

$$At kT = 0,$$

$$G_{\alpha\beta} = -\frac{e^2}{h} \operatorname{Tr} \left[s_{\alpha\beta}^{\dagger} s_{\beta\alpha} \right]$$

$$S_{\alpha\beta} = 2 \int dt \langle \Delta \hat{I}_{\alpha}(t) \Delta \hat{I}_{\beta}(0) \rangle$$
At kT = 0, M contacts with $f_{\gamma} = f$, N-M contacts at $f_{\delta} = f_{0}$

$$S_{\alpha\beta} = -2\frac{e^2}{h} \int dE \operatorname{Tr} \left[B_{\alpha\beta}^{\dagger} B_{\beta\alpha} \right],$$

$$B_{\alpha\beta} = \sum_{\gamma=1}^{M} s_{\alpha\gamma} s_{\beta\gamma}^{\dagger} (f_{\gamma} - f_{0})$$
M=1, partition noise

M > 1, relative phase of scattering matrix elements becomes important Exchange interference effects: Buttiker, PRL 68, 843 (1992)

Intensity-Interferometers

Hanbury Brown and Twiss, Nature 177, 27 (1956)

Mandel, Phys. Rev. A 28, 929 (1983)

Interference of independent photons:

R. Kaltenbach et al. (Zeilinger), PRL 96, 240502 (2006) (synchronization)M. Halder, et al. (Gisin), unpublished. (down conversion)

HBT-Intensity Interferometer

Hanbury Brown and Twiss, Nature 177, 27 (1956)

Interference not of amplitudes but of intensities

Optics: classical interpretation possible

Quantum mechanical explanation: Purcell, Nature 178, 1449 (1956)

Indistinguishable particles:

Statistics, exchange amplitudes

$$\int d\tau \langle \Delta I_A(t) \Delta I_B(t+\tau) \rangle = f\left(\frac{d\theta}{\lambda}\right)$$

M. Büttiker / The quantum phase of flux correlations in waveguides

"The Quantum Phase of Flux Correlations in Wave Gudies", Buttiker, Physica B175, 199 (1991); PRL 68, 843, (1992).

Optical and Electrical Mach-Zehnder-Interferometer

 $s_{31} = \frac{1}{2} \left[e^{i(\phi_A - \chi_1)} + e^{i(\phi_B - \chi_2)} \right]$

Ji et al (Heiblum), Nature 422, 415 (2003)

$$\chi_1 - \chi_2 = 2\pi \Phi / \Phi_0$$

Φ

φ_A

$$G_{31} = \frac{e^2}{2h} [1 + \cos(\phi_A - \phi_B - 2\pi\Phi/\Phi_0)]$$

$$S_{34} = -2\frac{e^2}{8h} |eV| [1 + \cos(2(\phi_A - \phi_B - 2\pi\Phi/\Phi_0))]$$

Electrical Mach-Zehnder-Interferometer⁸

Ji et al (Heiblum), Nature 422, 415 (2003)

Two-particle interferometer Samuelsson, Sukhorukov, Buttiker, PRL 92, 026805 (2004)

Yurke and Stoler, PRA 46, 2229 (1992)

$$s_{52} = T_A^{1/2} e^{i(\phi_1 + \chi_1)} T_C^{1/2} \Rightarrow \qquad G_{52} = -\frac{e^2}{h} T_A T_C$$

All elements of the conductance matrix are independent of AB-flux

В

 ϕ_2

Two-particle Aharonov-Bohm Effect 10

Samuelsson, Sukhorukov, Buttiker, PRL 92, 026805 (2004)

$$S_{\alpha\beta} = 2 \int dt \langle \Delta I_{\alpha}(0) \Delta I_{\beta}(t) \rangle$$

$$S_{58} = -2 \frac{e^2}{h} \int dE |s_{52}^* s_{82} + s_{53}^* s_{83}|^2 (f - f_0)^2$$
For $T_A = T_B = T_C = T_D = 1/2$;
$$S_{58} = -\frac{e^2}{4h} |eV| \left[1 + \cos\left(\phi_1 + \phi_2 - \phi_3 - \phi_4 + 2\pi \frac{\Phi}{\Phi_0}\right) \right]$$
[N >2 : Sim and Sukhorukov (2006)]

Two-particle Aharonov-Bohm effect: 11 Experiment I

I. Neder, N. Ofek, Y. Chung, M. Heiblum, D. Mahalu and V. Umansky, Nature 448, 333 (2007).

Two-particle Aharonov-Bohm effect: Experiment II

I. Neder, N. Ofek, Y. Chung, M. Heiblum, D. Mahalu and V. Umansky, Nature 448, 333 (2007).

12

Spin entanglement

PHYSICAL REVIEW

VOLUME 108, NUMBER 4

NOVEMBER 15, 1957

13

Discussion of Experimental Proof for the Paradox of Einstein, Rosen, and Podolsky

Quantum computation ?

Here: Orbital entanglement

Orbital entanglement

NS-structures

Pair-tunneling picture

Normal conductors Electron-hole picture

Samuelsson, Sukhorukov, Büttiker, PRL 91, 157002 (2003)

Beenakker, Emary, Kindermann, van Velsen, PRL 91, 147901 (2003)

Two-particle entanglement Samuelsson, Sukhorukov, Buttiker, PRL 92, 026805 (2004)

 $^{\prime}R_{C} = T_{D} = R \ll 1$; $\tau_{C} = \hbar/eV$; $\tau \sim \hbar/eVR$, tunneling limit

 $|\Psi_{in}\rangle = \prod_{0 < E < eV} c_2^{\dagger}(E) c_3^{\dagger}(E) |0\rangle \qquad \text{incident state}$ $|\Psi\rangle = |\bar{0}\rangle + \sqrt{R} \int_0^{eV} dE \left[c_{3B}^{\dagger} c_{3A} + c_{2B}^{\dagger} c_{2A} \right] |\bar{0}\rangle + O(R) \qquad \text{orbitally entangled e-h-state}$

Entanglement test: Bell Inequality

Comparison of classical local theory with quantum mechanical prediction. Here: entanglement test

Bell Inequality: Clauser et al, PRL 23, 880 (1969)

$$S_{B} = |E(\phi_{A}, \phi_{B}) - E(\phi_{A}', \phi_{B}) + E(\phi_{A}, \phi_{B}') + E(\phi_{A}', \phi_{B}')| \leq 2$$

$$E(\phi_{A}, \phi_{B}) = P_{++} + P_{--} - P_{+-} - P_{-+}$$

$$P_{\alpha\beta} \propto \langle b_{\beta}^{\dagger}(t) b_{\alpha}^{\dagger}(t+\tau) b_{\alpha}(t+\tau) b_{\beta}(t) \rangle \quad (\tau \Delta \omega \ll 1)$$

16 measurements

Orbital

$$s_{A/B} = \begin{pmatrix} \cos \phi_{A/B} & -\sin \phi_{A/B} \\ \sin \phi_{A/B} & \cos \phi_{A/B} \end{pmatrix}$$

Samuelsson et al. PRL 91, 157002 (2003) Chtchelkatchev et al, PRB 66, 161320 (2002); Faoro, Taddei, Fazio, PRB 69, 125326 (2004) violation of BI implies entanglement but

not all entgangled states violate BI not invarinant under local rotations

Electron-electron entanglement through postselection¹⁷

Symmetric interferometer $T, R \approx 1/2$

Electron-hole picture not appropriate

Incident electron state is a product state: no intrinsic entanglement

Two-particle effects nevertheless persists

A Bell Inequality can be violated

Explanation: Entanglement through ``postselection" (measurement)

Joint detection probability $P_{\alpha\beta} \propto \langle b_{\beta}^{\dagger}(t) b_{\alpha}^{\dagger}(t) b_{\alpha}(t) b_{\beta}(t) \rangle = (h^{2}/e^{2})[(1/2\tau_{c})S_{\alpha\beta} + I_{\alpha}I_{\beta}]$ $= |s_{\alpha3}s_{\beta2} - s_{\alpha2}s_{\beta3}|^{2} \quad \tau_{c} = \hbar/eV$ $\langle I_{\alpha} \rangle = \frac{e^{2}}{h}V(|s_{\alpha2}|^{2} + |s_{\alpha3}|^{2}),$ Bell parameter (Bell Inequality):

 $S_B^{max} = 2\sqrt{1 + \cos^2 \phi_0}, \ \phi_0 = \phi_1 + \phi_2 - \phi_3 - \phi_4 + 2\pi \Phi/\Phi_0$

Short time statistics: Pauli principle leads to injection of at most one electron in a short time interval: only two-particle transmission probability enters

Black body radiation sources

Sources: black body Energy window: narrow band filters $\Delta \omega = 2\pi/\tau_C$

$$P_{lphaeta}\propto \langle b^{\dagger}_{eta}(t)b^{\dagger}_{lpha}(t)b_{lpha}(t)b_{eta}(t)
angle \propto \left[(1/2 au_c)S_{lphaeta}+I_{lpha}I_{eta}
ight]$$

 $S_B^{max} = (2/3)\sqrt{1 + \cos^2 \phi_0}$,

No violation: In contrast to electron injection through a single quantum channel where in each time-slot only one particle is injected, in the bosonic case, many particles can be injected.

Quantum Tomography with current and shot noise measurements

A complete reconstruction of one and two particle density matrices with current and shot-noise mesurements

Samuelsson, Büttiker, Phys. Rev. B 73, 041305 (2006)

 $n, m, k, l \in \{1, 2\}$ Matrix elements

$$\rho_{A} = \sum_{n,m=1}^{2} \rho_{nm} b_{An}^{\dagger} |0\rangle \langle 0|b_{Am} \qquad \rho$$

$$\rho_{AB} = \sum_{n,m,k,l=1}^{2} \rho_{nm}^{kl} b_{An}^{\dagger} b_{Bk}^{\dagger} |0\rangle \langle 0|b_{Bl} b_{Am} \qquad \rho$$

Entanglement determined by
$$\rho_{AB}$$

$$E = E(\rho_{AB})$$

0

$$\rho_{nm} = \langle b_{Am}^{\dagger} b_{An} \rangle$$

$$\rho_{nm}^{kl} = \langle b_{Am}^{\dagger} b_{Bl}^{\dagger} b_{Bk} b_{An} \rangle$$

19

Quantum state tomography with quantum shot noise

P. Samuelsson and M. Buttiker, Phys. Rev. B 73, 041305 (2006)

Quantum State Tomography with shot noise

3

S

2

P. Samuelsson and M. Buttiker, Phys. Rev. B 73, 041305 (2006)

A1

A2

Setting	Parameters
I	$T_A=0, \phi_A \text{ arb.}$
II	$T_A=1$, ϕ_A arb.
	$T_A = 1/2, \phi_A = 0$
IV	$T_{A} = 1/2, \ \phi_{A} = \pi/2$

reduced density matrix

single particle

 $\{|1\rangle_A,|2\rangle_A\}$

$$\rho_A = \frac{1}{2} \sum_{\substack{j=0\\3}}^{3} c_i \sigma_i = \frac{1}{2} \begin{pmatrix} c_0 + c_3 & c_1 - ic_2 \\ c_1 + ic_2 & c_0 - c_3 \end{pmatrix}$$
$$\bar{c}_j = \sum_{\substack{k=0\\k=0}}^{3} Q_{jk} \langle n_A^+(k) \rangle$$
8 current measurements

16 current correlation measurements

(same as for BI but in contrast to BI, completely determines entanglement)

B1

B2

$$\{|1\rangle_{A}|1\rangle_{B}, |1\rangle_{A}|2\rangle_{B}, |2\rangle_{A}|1\rangle_{B}, |2\rangle_{A}|2\rangle_{B}\}$$

$$\rho_{AB} = \frac{1}{4} \sum_{i,j=0}^{3} c_{ij}\sigma_{i} \otimes \sigma_{j}$$

$$\bar{c}_{ji} = \sum_{k,l=0}^{3} Q_{jk}Q_{il} \langle n_{A}^{+}(k)n_{B}^{+}(l) \rangle$$

 $Q = \begin{pmatrix} -1 & -1 & 2 & 0 \\ -1 & -1 & 2 & 0 \\ -1 & -1 & 0 & 2 \\ 1 & -1 & 0 & 0 \end{pmatrix}$

Summary

- Interference of independently emitted electrons
- Two-particle Aharonov-Bohm effect
- Orbital entanglement
- Bell test of orbital entanglement
- Orbital quantum state tomography

$$E = E(\rho_{AB})$$

Pumping of entanglement

Quantum electronics: from Schottky to Bell

Markus Büttiker University of Geneva

Coherence and Quantum Optics 9 Rochester, NY, June 13, 2007

Quantum optics/electronics

Experiments and theory of quantum coherent electron transport resemble more and more quantum optics

Important difference: Electrons are Fermions and carry charge

Counting statistics

Quantum measurements

Generation of entangled states

Quantum Point Contact + Edge States = Beam Splitter

Edge state

Solid State – Beam Splitter

Opening the tool box.

Making quantum mechanics visible in man made structures Looking at individual quantum systems

Webb et al. (1985)

diffusive $\lambda_F < l_e < L < l_\phi < l_{in}$ ballistic

$$\lambda_F < L < l_e < l_\phi < l_{in}$$

Persistent currents

Aharonov-Bohm effect

Universal conductance fluctuations

Conductance quantization

- + Long spin coherence length
- Difficult to manipulate/detect

Quantum versus classical shot noise

(a)

Classical shot noise:

W. Schottky, Ann. Phys. (Leipzig) 57, 541 (1918)

$$\langle (\Delta I)^2 \rangle_{\nu} = 2e \langle I \rangle$$

Quantum shot noise:

Khlus (1987), Lesovik (1989), Yurke and Kochanski (1989), Buttiker (1990), Beenakker and van Houten (1991)

 $\langle (\Delta n_T)^2 \rangle = T(1-T) \quad \Rightarrow \quad \langle (\Delta I)^2 \rangle_{\nu} = 2e \langle I \rangle (1-T)$

Shot Noise: Two-terminal

Quantum partition noise: kT = 0, V>0,

$$S = 2\frac{e^2}{h} |eV| Tr[tt^{\dagger}rr^{\dagger}] = 2\frac{e^2}{h} |eV| \sum_n T_n(1 - T_n)$$

If all $T_n \ll 1 \implies$ Buttiker (1990)

$$S = 2e(\frac{e^2}{h}\sum_n T_n)|V| = 2e|I|$$
 Schottky (Poisson)

Fano factor

 \mathbf{C}

 $F = \frac{S}{S_P} = \frac{\sum_n T_n (1 - T_n)}{\sum_n T_n} \quad \begin{array}{l} \text{Experiments:} \\ \text{Reznikov (Heiblum) et al. PRL 75, 3340 (1995)} \\ \text{Kumar, (Glattli) et al. PRL 76, 2778 (1996)} \end{array}$

Partition noise of fermions

Oberholzer, Henny, Strunk et al, Physica E6, 314 (2000)

See also: **Henny**, et al., *Science* 284, 296 (1999); Oliver et al. Science 284, 299 (1999)

Why interference from independent sources?

Probably the most interesting effect of an independent particle description of transport

Exchange can be made visible

Vital * for implementation of quantum networks and quantum computing schemes:

quantum repeaters

Knill-Laflamme-Milburn (linear) quantum computing schemes

In opitcs interference of independent sources is only possible with active synchronization of the sources.

*Kaltenbaek (Zeilinger) et al. PRL 96, 240502 (2006)

Visibility and violation of Bell Inequality ¹⁷ (Dephasing)

Spatially seprated sources: qubit protectet against relaxation:

 $|\rho\rangle = |UU\rangle\langle UU| + |DD\rangle\langle DD| + \gamma(|UU\rangle\langle DD| + |DD\rangle\langle UU|)/2$

$$S_{58} = -\frac{e^2}{4h} |eV| \left[1 + \gamma^2 \cos(\phi_0) \right]$$

 $S_B^{max} = 2\sqrt{1 + \gamma^2 \cos^2 \phi_0}, \quad \phi_0 = \phi_1 + \phi_2 - \phi_3 - \phi_4 + 2\pi \Phi/\Phi_0$

Two-particle Intensity Interferometers

Glattli et al. Schoenenberger Heiblum et al. 2004 but no success!

Electrical Mach-Zehnder Interferometer II²¹

Neder, Heiblum, Levinson, Mahalu, Umansky, PRL 96, 016804 (2006)

Electrical Mach-Zehnder Interferometer III²²

Litvin, Tranitz, Wegscheider and Strunk, PRB 75, 033315 (2007)

$$E_b \approx \hbar v_D / \Delta L, T_A = T_B = 1/2$$
$$v = \frac{2\pi k_B T}{eV} \frac{|sin(\frac{eV}{2E_b})|}{sinh(\frac{\pi k_B T}{E_b})}$$

Chung, Samuelsson, and Buttiker, PRB 72, 125320 (2005)

23 Electrical Mach-Zehnder Interferometer IV

Roulleau, Portier, Glattli, Roche, Faini, Gennser, and D. Mailly, cond-mat/0704.0746 phase fluctuations!

Failure to see two-particle AB-effect: Is there something wrong with theory?

Theory missing Luttinger like physics

Resonant dephasing of the electronic Mach-Zehnder interferometer E.V. Sukhorukov, V. V. Cheianov, cond-mat/0609288

Electrons in different reservoirs already entangled

Suppression of Visibility in a Two-Electron Mach-Zehnder Interferometer Ya. M. Blanter, Yuval Gefen, cond-mat/0703186

Tomography: Medical

Cormack and Hounsfield

J. Radon, 1917

How can you get a picture of a slice of something without cutting it apart?

Projecting Shadows

Pauli's question

M. G. Raymer, Contemporary Physics, 38, 343 (1997)

Pauli's question (1933):

Can the wave function $\Psi(x)$ be determined uniquely from the distribution of position and momentum?

No: such data is not tomographically complete.

Pauli question generalized:

Can one infer the whole complex function $\Psi(x)$ from some series of measurements on a large collection of identically prepared particles?

Yes.

J. Bertrand and P. Bertrand, Found. Phys., 17, 397 (1997)

Continuous variable tomography

Wigner function

$$W(x,p_x) = \frac{1}{2\pi\hbar} \int \Psi(x+x'/2) \Psi^*(x-x'/2) exp(-ix'p_x/\hbar) dx'$$

measure

$$|\Psi_{\zeta}(\zeta)|^2 = \int \int W(x, p_x) \,\delta(\zeta - x - (p_x/m)t) \,dx \,dp_x$$

with Radon transformation obtain Wigner function

from Wigner obtain via inverse Fourier transform $\Psi(x + x'/2)\Psi^*(x - x'/2)$ taking x = x'/2 gives $\Psi(2x)\Psi^*(0)$

Quantum State Tomography: Experiments

Angular momentum state of an electron in hydrogene atom

J.R. Ashburn et al, Phys. Rev. A 41, 2407 (1990).

Quantum state of squeezed light

D.T. Smithey et al, Phys. Rev. Lett. 70, 1244 (1993). Vibrational state o a molecule

T.J. Dunn, et al, Phys. Rev. Lett. 74, 884 (1995). **Trapped** ions

D. Liebfried et al, Phys. Rev. Lett. 77, 4281 (1996).

Atomic wave packets

Ch. Kurtsiefer, T. Pfau, and Mlynek, Nature 386, 150 (1997).

Polarization entangled photons P.G. Kwiat, et al, Nature 409, 1014 (2001);

T. Yamamoto et al ibid 421, 343 (2003).

Entanglement of two superconducting qubits

Matthias Steffen et al, Science 313, 1423 (2006)

Dynamic electron-hole generation

Samuelsson and Buttiker, Phys. Rev. B 72, 155326 (2005)

Summary

Shot noise correlations probe two-particle physics

- Two-particle Aharonov-Bohm interferometer
- Orbital entanglement
- Bell test of orbital entanglement
- Orbital quantum state tomography

Shot noise measurements determine the reduced two-particle density matrix up to local rotations

Tomography delivers not only a criteria for entanglement but allows to experimentally quantify entanglement

$$E = E(\rho_{AB})$$