Quantum Transport and Dynamics in Nanostructures The 4th Windsor Summer School on Condensed Matter Theory 6-18 August 2007, Great Park Windsor (UK)

Physics of Nanotubes, Graphite and Graphene Mildred Dresselhaus

Massachusetts Institute of Technology, Cambridge, MA

Physics of Nanotubes, Graphite and Graphene

Outline of Lecture 1 - Nanotubes

- Brief overview of carbon nanotubes
- Review of Photophysics of Nanotubes
- Phonon assisted Photoluminescence
- Double wall carbon nanotubes
- Nano-Metrology

Carbon Nanotube researchstill a growing field

- 1991 nanotube observation by Sumio lijima (NEC) opening field
- number of publications is still growing exponentially

number of publications containing "Carbon Nanotube" vs. time

lijima, S., Helical Microtubules of Graphitic Carbon. Nature, 1991. 354(6348): p. 56-58.

Carbon Nanotubes

(5,5) Armchair Nanotube

(9,0) Zigzag Nanotube

(6,5) Chiral Nanotube

(*n*,*m*) notation focuses on symmetry of cylinder edge

Carbon materials

- Diamond
- Graphite (hexagonal, rhombohedral)
- HOPG (highly oriented pyrolytic graphite)
- Pyrolytic graphite
- Turbostratic graphite
- Kish graphite
- Liquid carbon
- Amorphous carbon
- Carbon and graphitic foams
- Carbon fibers
- Fullerenes
- Nanotubes
- Nanohorns
- Graphene fibers and scrolls
- Graphene
- Graphene ribbons

3D, 2D, 1D Carbon Materials

Chain *sp*¹ (1D) 1855 cm⁻¹

All are Raman active with characteristic frequencies

Unique Properties of Carbon Nanotubes within the Nanoworld

graphene sheet

SWNT

armchair

zigzag

chiral

- Size: Nanostructures with dimensions of ~1 nm diameter (~10 atoms around the cylinder)
- Electronic Properties: Can be either metallic or semiconducting depending on diameter and orientation of the hexagons
- Mechanical: Very high strength, modulus, and resiliency. Good properties on both compression and extension.
- Physics: 1D density of electronic states
- Single molecule Raman spectroscopy and luminescence.
- Single molecule transport properties.
- Heat pipe, electromagnetic waveguide.

One Dimensional Systems:

- High aspect ratio
- Enhanced density of states
- Single wall carbon nanotubes SWNT: Chirality and diameter-dependent properties

Nanotube Structure in a Nutshell

Each (*n*,*m*) nanotube is a unique molecule

R.Saito et al, Imperial College Press, 1998

Electronic structure of a carbon nanotube

Rolling up 2D graphene sheet

Roll-up graphene sheet

Confinement of 1D electronic states

1D van Hove singularities high density of electronic states (DOS) at well defined energies

Graphene ribbons resemble nanotubes in some ways

Metal or Semiconductor ?

R. Saito et al., Appl. Phys. Lett. 60, 2204 (1992)

- Density of States
- Depending on Chirality, Diameter

Each (n,m) nanotube is a unique molecule

Armchair graphene ribbons can be M or S

Physics of Nanotubes, Graphite and Graphene

Outline of Lecture 1 - Nanotubes

- Brief overview of carbon nanotubes
- Review of Photophysics of Nanotubes
- Phonon assisted Photoluminescence
- Double wall carbon nanotubes
- Nano-Metrology

Resonance Raman Spectroscopy (RRS)

A.M. Rao et al., Science 275 (1997) 187 **RRS:** R.C.C. Leite & S.P.S. Porto, PRL **17**, 10-12 (1966)

Raman spectra from SWNT bundles Enhanced Signal 180 ✓ Optical Absorption 1592 ✓ e-DOS peaks 1570 (n,m) = (10,0)1320 nm, 20 W/cm² Raman intensity (arbitrary units) 1258 1548 DOS [states/unit cell of graphite] 191 E = 0.94 eV502 558 1067 1110 1593 1570 = 1.17 eV1064 nm. 5 W/cm² 1549 0.5 1278 815 860 922 359 46 157 1 169 1294 1568 1592 = 1.58 eV780 nm, 12 W/cm² 1546 205 1542 -1.0 0.0 1.0 Energy/γ -3.0 2.0 3.0 4.0 -4.0 -2.0 192 = 1.92 eV647.1 nm, 2 W/cm² 1321 236 1593 diameter-selective resonance process 390 427 = 2.41 eV186 1567 $\omega_{\rm RBM} = \alpha / d_{\rm t}$ 1550 514.5 nm, 2 W/cm² 1347 1526 376 755 855

500

1000

Frequency (cm⁻¹)

1500

Resonant Raman Spectra of Carbon Nanotube Bundles M. A. Pimenta (UFMG) et al., Phys. Rev. B 58, R16016 (1998)

Single Nanotube Spectroscopy yields E_{ii}, (*n*,*m*)

Resonant Raman spectra for isolated single-wall carbon nanotubes grown on Si/SiO₂ substrate by the CVD method

A. Jorio (UFMG) et al., Phys. Rev. Lett. 86, 1118 (2001)

Raman signal from *one* SWNT indicates a strong resonance process

Raman Spectra of SWNT Bundles

- •Raman D-band characterizes structural disorder
- $\bullet G^{\text{-}}$ band distinguished M, S tubes and G^+ relates to charge transfer
- •G' band (2nd order of D-band) provides connection of phonon to its wave vector

Band Gap Fluorescence

M. J. O'Connell *et al.*, Science 297 (2002) 593 S. M. Bachilo *et al.*, Science 298 (2002) 2361.

SDS=Sodium Dodecyl Sulfate

Initially (n,m) assignments were made by empirical excitation-emission pattern

PHOTOLUMINESCENCE

SDS-wrapped HiPco nanotubes in solution

S. M. Bachilo et al., Science 298, 2361 (2002)

2*n*+*m*=constant family patterns are observed in the PL excitation-emission spectra
 Identification of ratio problem

Showed value of mapping optical transitions

Perhaps this technique can be applied to study graphene ribbons

Raman Mapping of a Nanotube

Resonance Raman Spectroscopy on the same sample used for PL

EXTENDED TIGHT BINDING MODEL

Kataura plot is calculated within the extended tight-binding approximation using Popov/Porezag approach:

curvature effects (ssσ, spσ, ppσ, ppπ)
 long-range interactions (up to ~4Å)
 geometrical structure optimization

The extended tight-binding calculations show family behavior (differentiation between S1 & S2 and strong chirality dependence) similar to that of the PL empirical fit

Family behavior is strongly influenced by the trigonal warping effect

Ge.G. Samsonidze et al., APL 85, 5703 (2004) N.V. Popov et al Nano Lett. 4, 1795 (2004) & New J. Phys. 6, 17 (2004)

2n+m families in SWNTs R. Saito *et al.*, *Phys. Rev.* B, 72, 153413 (2005)

Physics of Nanotubes, Graphite and Graphene

Outline of Lecture 1 - Nanotubes

- Brief overview of carbon nanotubes
- Review of Photophysics of Nanotubes
- Phonon assisted Photoluminescence
- Double wall carbon nanotubes
- Nano-Metrology

DNA wrapping of SWNTs

DNA Wrapping:

→ provides good separation of CoMoCAT SWNT sample

Subsequent fractionation:

 \rightarrow results in sample strongly enriched in (6,5) species

Average DNA helical pitch ~ 11 nm, height ~ 1.08nm.

DNA-Assisted SEPARATION M. Zheng et al., Science, **302**,1546 (2003).

Raman characterization shows that

•DNA wrapping removes metallic (M) SWNTs

•Chromatography further removes M SWNTs preferentially

Ion-exchange chromatography (IEC)

Hybrid DNA-SWNTs:

• M-SWNT different surface charge density, higher polarizability, elute before S-CNTs

Nanotube PL Spectroscopy

Most Measurements

- excitation at E₂₂, emission at E₁₁
- measured with Xe lamp
- (2n+m) family patterns provide (n, m) identifications.

Our Measurements

- (6,5) enriched sample
- Intense light source (laser)
- Allows observation of phonon assisted processes

PL map of SDS- dispersed HiPco CNTs

Maruyama's work suggests study of detailed phonon-assisted excitonic relaxation processes for different phonon branches.

PL Spectra of (6,5) Nanotubes

Excitons in Carbon Nanotubes

Experimental Justification for excitons

2-photon excitation to a $2A^+$ symmetry exciton (2p) and 1-photon emission from a $1A^-$ exciton (1s) cannot be explained by the free electron model

The observation that excitation and emission are at different frequencies supports exciton model

Wang et al. Science 308, 838 (2005)

The exciton-phonon sidebands

further support exciton model

Emission Identified with One and Two Phonon Processes:

Non-degenerate Pump-probe

S. G. Chou et al. Phys. Rev. B (2005)

Pump Probe Studies at Special Epump

Probing at Different Energies:

More on Excitons

- Why?
 - Large binding energy (0.5eV)
 - Even at room temperature, excitons exist.
 - Exciton specific phenomena
 - dark excitons, two photon, environment
- What can we know or imagine? A¹⁻ (1s)
 - Near cancellation by self energy
 - ETB + many body effects reproduce Eii
 - Localized exciton wave function
 - enhancement of optical process
 - Length dependence.

(2p)

Exciton exists only in the 3M-triangle

Energy minima for the π * band exist only in 3M Δ . Cutting lines occur around K-point.

Symmetry considerations J. Jiang et al. *Phys. Rev.* B75 035405 (2007)

Centre of mass motion

 $k_c - k_v = \overline{K}$:Good quantum number

Relative motion

$$(k_c + k_v)/2 = k$$

A symmetry excitons

Bright and dark excitons

A⁻: bright exciton A⁺, E and E^{*:} dark excitons

E symmetry exciton and its dispersion

Dark state has the lowest energy

J. Jiang et al. Phys. Rev. B75 035405 (2007)

Physics of Nanotubes, Graphite and Graphene

Outline of Lecture 1 - Nanotubes

- Brief overview of carbon nanotubes
- Review of Photophysics of Nanotubes
- Phonon assisted Photoluminescence
- Double wall carbon nanotubes
- Nano-Metrology

Raman Spectra of SWNT Bundles

Photophysics of SWNTs is now at an advanced stage Photophysics of MWNTs (DWNTs) is at an early stage

Motivation for studying DWNTs

- Applications
 - world shows much interest
- Synthesis
 - world has made major progress
- Promising for fundamental physics
- Study of the interface between DWNTs and bilayer graphene should enrich both areas

Approaches to DWNTs

simplest assumption

Suggests using Kataura plots for SWNTs as first approximation for DWNTs, but E(k) of monolayer and bilayer graphene say more detail is needed

Br₂-doped double-wall nanotubes

4,1451 (2004)

Kataura plot: undoped vs. doped SWNTs using Extended Tight Binding Model

Semiconducting outer/Metallic inner configuration

Metallic outer/Semiconducting inner configuration

Metallic shielding effects Metallic outer/semiconducting inner wall

- The G-band is predominantly from semiconducting Nanotubes (based on diameter dependence)
- No shift in the G-band for semiconducting inner tubes
- The inner tubes are shielded by the metallic outer tubes

Charge transfer effects Semiconducting outer/metallic inner

S

- The G-band profile is a mixing of semiconducting and metallic profiles;
- Shift in the G-band from semiconducting outer tubes indicates charge transfer to the Br₂ molecules
- The BWF (Breit Wigner Fano) decreases after doping.
- The decrease in the overall intensity indicates depletion of states

Calculated electronic charge density difference (ρ_{doped} - $\rho_{undoped}$) of DWNTs

Calculation supports experimental observations about charge transfer

A.G. Souza Filho et al Nano Letters (2007)

Undoping experiments on bromine doped DWNTs

The dopant is completely removed after heat treatment

Souza Filho et al, PRB (2006)

Spectrum for RBM for pristine and H_2SO_4 doped DWNTs

E_{laser}=2.052 eV

- •Outer walls strongly affected by doping
- Inner semiconducting (S) tubes weakly interact with dopant
 Inner metallic (M) tubes more strongly interact with dopant

E. Barros et al, PRB (2007)

What we learned from intercalation studies of DWNTs

- The Kataura plot from SWNTs provides a semi-quantitive interpretation of frequencies for inner wall tubes for DWNTs
- The M/S configuration shields inner semiconducting tubes from the effect of the dopant
- The S/M configuration allows charge transfer to inner metallic tubes

This work potentially relates to bilayer graphene

Laser Energy Dependence of G'-band Spectra

Some resemblance to bilayer graphene

E. B. Barros et al., PRB in press (2007)

Physics of Nanotubes, Graphite and Graphene

Outline of Lecture 1 - Nanotubes

- Brief overview of carbon nanotubes
- Review of Photophysics of Nanotubes
- Phonon assisted Photoluminescence
- Double wall carbon nanotubes
- Nano-Metrology

The problem of Nano-metrology

Why do we need metrology for nanotechnology? Why do we need reference standards? What is new about metrology at the nano-scale?

What does nanoscience have to do with metrology?

World wide production of Carbon Nanotubes

MWNTs 270 tons/yr (2.45× 10⁵ kg/year) SWNTs 7 tons/yr (6.35 × 10³ kg/year) 8K US\$ / kg to 5.0 × 10⁵ US\$ / kg

(R. Blackmon, http://www.wtec.org/cnm/)

Ado Jorio · Mildred	S. Dresselhaus
Gene Dresselhaus	Editors

	Gene Dresselhaus <i>Editors</i>	Metrology is guided by appli		
	TOPICS IN APPLIED PHYSICS 111	Potential Applications	of Carbon	
Carbon Nanotubes		by M. Endo, M. S. Strano, P. M. Ajayan @ S		
	Advanced Topics in the Synthesis, Structure, Properties and Applications	Large Volume Applications	Limited Volu (Mostly based Nanotube Str	
	🖉 Springer			
	Present	 Battery Electrode Additives (MWNT) Composites (sporting goods; MWNT) Composites (ESD* applications; MWNT) *ESD – Electrical Shielding Device 	 Scanning Prob Specialized M (catheters) (MW 	
	Near Term (less than ten years)	 Battery and Super-capacitor Electrodes Multifunctional Composites Fuel Cell Electrodes (catalyst support) Transparent Conducting Films Field Emission Displays / Lighting CNT based Inks for Printing 	 Single Tip Ele Multi-Tip Array T Probe Array T CNT Brush Co CNT Sensor E Electro-mecha Thermal Mana 	
	Long Term (beyond ten years)	 Power Transmission Cables Structural Composites (aerospace and automobile etc.) CNT in Photovoltaic Devices 	 Nano-electron Flexible Electric CNT based bio CNT Fitration Membranes Drug-delivery 	

Metrology is guided by applications Nanotubes

Springer TAP111

Advanced Topics in the Synthesis, Structure, Properties and Applications	Large Volume Applications	Limited Volume Applications (Mostly based on Engineered Nanotube Structures)
Present	 Battery Electrode Additives (MWNT) Composites (sporting goods; MWNT) Composites (ESD* applications; MWNT) *ESD – Electrical Shielding Device 	 Scanning Probe Tips (MWNT) Specialized Medical Appliances (catheters) (MWNT)
Near Term (less than ten years)	 Battery and Super-capacitor Electrodes Multifunctional Composites Fuel Cell Electrodes (catalyst support) Transparent Conducting Films Field Emission Displays / Lighting CNT based Inks for Printing 	 Single Tip Electron Guns Multi-Tip Array X-ray Sources Probe Array Test Systems CNT Brush Contacts CNT Sensor Devices Electro-mechanical Memory Device Thermal Management Systems
Long Term (beyond ten years)	 Power Transmission Cables Structural Composites (aerospace and automobile etc.) CNT in Photovoltaic Devices 	 Nano-electronics (FET,Interconnects) Flexible Electronics CNT based bio-sensors CNT Fitration/Separation Membranes Drug-delivery Systems

What should we measure? At which scale?

"Quality" Statistical Comparison

Thermogravimetric analysis (TGA) Quartz cyrstal microbalance (QCM)

QCM shows SWNTs are non-homogeneous already at the μg scale

Can we trust the measurements?

What do we use for measuring nanomaterials properties?

4-PROBES TRANSPORT

SCANNING

IBM Website

LIGHT: Raman and photoluminescence

From Achim Hartschuh

From Hubert - FFI

Can we trust the measurements?

What is the ideal environment?

Encapsuled by micelles

Sitting on a substrate

Suspended in air

Within a forest

Nano-metrology is a wide open area for development requiring collaboration between metrology and nanoscience experts