Quantum optics in mesoscopic systems

Lecture II

A. Imamoglu Quantum Photonics Group, Department of Physics ETH-Zürich

Co-workers

M. Atature, J. Dreiser, T. Yilmaz, A. Badolato (ETH) N. Vamivakas, S. Unlu (Boston University) A. Hoegele, C. Galland (ETH)

Outline

Optical pumping of a single-electron spin
Faraday rotation from a single confined spin
How strongly can a quantum dot absorb light?
A new solid-state system for quantum optics

- Spin is a "good" quantum number for conduction band electrons
- Highest energy discrete valence-band states are "heavy-hole states"
- ~10⁵ atoms (= nuclear spins) in each QD.

Artificial alkali-like atom?

- Is it possible to realize a quantum dot system with 2 or more low energy states with a long coherence time?
- \Rightarrow Spin states of an excess conduction-band electron: A system with long coherence times (> 10µs) + fast optical manipulation

Controlled charging of a single QD: principle

Quantum dot embedded between n-GaAs and a top gate.

Coulomb blockade ensures that electrons are injected into the QD one at a time

Voltage-controlled photoluminescence (PL)

Quantum dot emission energy depends on the charge state due to Coulomb effects.

X⁰ and X¹⁻ lines shift with applied voltage due to DC-Stark effect.

The length of the tunnel barrier (25 vs 35 nm) strongly affects the PL.

Charged QD X¹⁻ (trion) absorption/emission

 $\Rightarrow \sigma$ + resonant absorption is Pauli-blocked \Rightarrow The polarization of emitted photons is determined by the hole spin

Trion transitions in a charged QD

Γ: spontaneous emission rate Ω : laser coupling (Rabi) frequency γ : spin-flip spontaneous emission rate due to electron or hole state mixing ξ : spin-flip rate due to hyperfine flip-flop or co-tunneling events

Absorption Plateau of a single-electron charged QD

Absorption Plateau of a single-electron charged QD

-An expected Zeeman shift of the absorption plateau to higher laser frequencies

-The dissapearance of absorption in the center of the plateau suggests <u>optical pumping</u>

Trion transitions in the center of the absorption plateau: Hyperfine mixing of spin-states

B = 0 **T**: fast spin-flips ($\xi^{-1} \sim 3$ ns)

B = 0.2 T: slow spin-flips

$$\gamma^{-1} \sim 1 \ \mu s, \quad \Gamma^{-1} = 1 \ ns$$

 \Rightarrow The electron is optically pumped into the $|\uparrow\rangle$ state for B > 0.1 T

Recovery of absorption in a single-electron charged QD

 \Rightarrow Absorption is recovered fully by applying a second laser.

 \Rightarrow Spin pumping only occurs in the center of the plateau?

Exchange interactions with the Fermi-sea induce spin-flip co-tunneling

VIRTUAL STATE

- Co-tunneling is enhanced at the edges of the absorption plateau where the virtaul state energy ~ initial/final state energy
- Co-tunneling rate changes by 5-orders-ofmagnitude from the plateau edge to the center

QD absorption as a function of an external field

- For B > 5 Tesla, absorption reappaears due to spin-orbit mediated spin relaxation
- Electron is well isolated from reservoirs only for

0.1 Tesla < B < 5 Tesla $500 \text{ mV} < V_{gate} < 530 \text{ mV}$

Spin cooling mechanism

- Cooling takes place due to <u>one-way</u> pumping by spin-flip spontaneous Raman scattering at rate $\gamma \sim 10^6 \text{ s}^{-1}$.
- There are three mechanisms for randomizing the spin state ($\sim 10^3 \text{ s}^{-1}$):
 - a) **Hyperfine interactions**:

Effective only for B ~0 due to energy conservation (i.e. incommensurate electronic and nuclear Zeeman energies)

$$H_{int} = \hbar \frac{A}{N} \sigma \cdot \sum_{i} \alpha_{i} \mathbf{I}^{i}$$
$$= \hbar \frac{A}{N} \sum_{i} \alpha_{i} (\frac{1}{2} \sigma_{z} I_{z}^{i} + \sigma_{-} I_{+}^{i} + \sigma_{+} I_{-}^{i})$$

b) Exchange interactions with the electron reservoir (co-tunneling):

Effective only at the edges of the plateau: co-tunneling rate differs by 5 orders of magnitude from the edge to the center of the plateau

c) **Phonon-assisted spin-flips due to spin-orbit interaction**:

Effective only for B > 5 Tesla.

⇒QD behaves like an artificial atom only for a certain range of the applied gate voltage and the magnetic field.

Measurement of a single QD spin

- The spin-state selective absorption: right (left) hand circularly polarized laser sees substantial absorption if the electron spin is in $|\uparrow\rangle$ ($|\downarrow\rangle$) and perfect transmission otherwise.
 - \Rightarrow Optical pumping of spin destroys the information about the initial spin before it can be measured.
- Faraday rotation of an off-resonant laser field (dispersive response) allows for shot-noise limited measurement, without inducing optical pumping.
- It is possible to obtain Faraday SNR>1 while keeping spin-flip Raman scattering events negligible (no need for a cavity): \Rightarrow maximize σ_{abs}/A_{laser}

Absorptive vs. Dispersive response of a QD

a b $X = \pi^+ + \pi^ \downarrow\uparrow$ $\mathbf{Y} = \pi^+ - \pi^-$ Initial $\pm = X \pm Y$ electron Х QD spin-state -A E determines whether the polarization 0.2 C Relative Transmission (%) rotation is σ^+ [•]π⁺ $\sigma^{\,+}$ π^+ $+\theta$ or $-\theta$; σ 0.1 this rotation is measured θ by the 0.0 difference signal -0. -2 2 -2 2 0 0 Laser Detuning (GHz)

Measurement of an optically prepared single spin-state using Faraday rotation of a far detuned (~50 GHz) linearly-polarized laser

Towards quantum nondemolition read-out of a single spin

- Single-spin read-out will be a key tool for assessing the fidelity of various quantum information processing protocols.
- Currently, back-action in the form of spin-sflip Raman scattered photons is at the level of $\sim 1 10$ in a measurement time (500 ms) yielding SNR = 1.
- Improvements in detector efficiency and the use of a <u>solid-immersion lens</u> that enhances σ_{abs}/A_{laser} should enable back-action evading read-out, <u>without the need for a cavity</u>.

Transmission measurements: the next generation

The laser extinction is 12% with a solid-immersion-lens

Saturation of QD absorption: direct measurement (no lock-in)

Semiconducting carbon nanotubes (with A. Hoegele & C. Galland)

- A solid-state system with vanishing hyperfine and spin-orbit interaction
- Due to strong exciton binding and diameter-dependence of emission energy, fast emitters over a broad wavelength range

Quantum light from a 0.5 µm long carbon nanotube Photoluminescence

Why does a nanotube emit quantum light? Exciton localization vs. Auger processes

Lifetime and saturation

⇒ Fast decay component dominating at high pump powers suggests that Auger processes play a key role in observed photon antibunching – QDs for free!