Introduction to the Physics of Semiconductor Quantum Dots

M. A. Kastner, MIT Windsor 2007

Outline: Measuring Energy Scales

- Coulomb blockade energy U (Metal Single Electron Transistor)
- Energy level spacing $\Delta \epsilon$ (Semiconductor SET)
- Coupling to the leads Γ and kT_{K}
- Measuring charge instead of current
- Electron counting to determine Γ

Two Barriers with Small Island

Schematic of Metal SET

Sequential Charging

At low T and with very small V_{ds} get one sharp peak for each electron added.

Charge Quantization

Current vs. Gate Voltage

Condition for Charge Quantization

An extra electron stays on the island for time RC. This time must be long enough that the uncertainty in its energy is less than U.

U > h/RC, but $U = e^2/C$

 $R > h/e^2$ or $G < e^2/h$

Adding Charge by Source-Drain

Coulomb Staircase

Coulomb Diamonds

SET made with nano-particle, Bolotin et al. APL **84**, 3154 (2004)

Note: switching from nearby charges

Schematic GaAs SET

Actual Process

		Construction of all operations where
5 nm GaAs cap		
5 nm Al.3Ga.7As	GaAs monolayer	
	Si delta doping	
5 nm Al.3Ga.7As	GaAs monolayer	
5 nm Al 3Ga 7As		
J IIII ALJOA. TAS		
GaAs buffer		
Schematic Diagram		Resist is applied
of the Shallow 2DEG Structure		to the wafer
Resist is exposed		Cap is selectively
and developed		etched away
Matal electrodes are denosited		Patterned, recessed gate
self-aligned with etch		electrodes remain

D. Goldhaber-Gordon et al, Nature, 391, 156 (1998)

Coulomb Charging Peaks

0.03 $\Delta V \sim e/C_g$ Data from Meirav et al. PRL 65, 771 (1990). Conductance (e²/h) 00 10 0 126 127 128 125 129 130 $V_g (mV)$ Gate Voltage

Note: Variation of peak height and spacing reflects individual levels.

Quantized Energy Levels

There is a peak in dI/dV_{sd} for every energy level. Although these have been detected in metal SET's it is hard because density of states is so large.

Excited State Spectroscopy

 dI/dV_{sd} has peak when level crosses E_F

Very small dot \Rightarrow peaks no longer periodic along V_{sd} = 0

Electron interactions are more complicated than just U and involve exchange.

Kouwenhoven et al Science **278**, 1788, 1997

Lifetime Broadening

Probability of electron remaining in a level on the dot decays as $exp(-t/\tau)$, so the level broadens into a Lorentzian with energy width $\Gamma=h/\tau$

Lorentzian Line Shape of Peaks vs Gate Voltage

 $2\mu/\Gamma$

The chemical potential μ is proportional to the gate voltage. The full width at half maximum is Γ . $\tau = h\Gamma^{-1}$ is the time for the electron to tunnel off.

Thermal Broadening

Thermal and Intrinsic Broadening

Absolute Thermometer

When $kT > \Delta \epsilon$ the peak conductance becomes constant and the width changes slope slightly.

For thermometer application see Pekola et al. PRL 73, 2903 (1994)

Determining Γ from peak width

Condition for Charge Quantization is Condition for Level Separation

Above Coulomb gap, the current is $I = Ne/\tau$, $\tau = h\Gamma^{-1}$ and $N = eV/\Delta\epsilon$ $G = I/V = (e^2/h)(\Gamma/\Delta\epsilon)$ $G < e^2/h \Rightarrow \Gamma < \Delta\epsilon$

Constant Interaction Model

Ignore interactions among electrons on artificial atom. States fill two at a time.

Actually more complicated, but it is a useful starting point.

Energy Scales in SET E $\Gamma \sim |t|^2 g(E_F)$ E_F II $\Delta \epsilon$ Filled U states Here $\Delta \varepsilon > U$ for simplicity g(E)t is the hopping matrix element

between dot and leads

Paired Peaks

Temperature Dependence

T Dependence at Fixed V_G

Note logarithmic decrease of conductance with T

Comparison with Scaling Theory

Charge Measurement

Presentations of Sami Amasha and Kenneth MaClean

Laterally Gated Quantum Dots

Measurement of Current

- Γ tuned by gate
 Γ ~ 0.01 100 GHz
- I ~ e Γ ~ 10fA 10 nA

Charge Sensing

Conductance

Measuring Charge

Field et al PRL 70 1311 (1993)

Charge Sensing

Real-time Charge Sensing

[Lu et al., Nature 2003 & Elzerman et al., Nature 2004]

Measuring Tunneling Rates

Single-Electron Counting

Dependence on Bias Voltage

Demonstrates: tunneling is elastic, exponential dependence on barrier height, ability to measure excited states. MacLean et al. Phys. Rev. Lett. **98**, 036802 (2007)

Summary

- Measure energy scales of quantum dots -U, $\Delta\epsilon$ (or E_{orb}), Γ , kT_{K}
- Measure charge instead of current
 - Access much smaller Γ
 - From charge with dc bias we see evidence for dominance of elastic tunneling