

Coherent excitonic matter

Peter Littlewood, University of Cambridge pbl21@cam.ac.uk

Rb atom condensate, JILA, Colorado

Momentum distribution of cold atoms

Exciton condensate ?, Kasprzak et al 2006

Bose-Einstein Condensation

- Macroscopic occupation of the ground state
 - Originally seen as a consequence of statistical physics of weakly interacting bosons
- Macroscopic quantum coherence
 - Interactions (exchange) give rise to macroscopic synchronisation $\psi \rightarrow \psi e^{i\phi}$

Genuine symmetry breaking, distinct from BEC

- Superfluidity
 - Rigidity of wavefunction stiffness of the phase – gives rise to collective modes
- An array of two-level systems may have precisely the same character

Acknowledgements

Paul Eastham Jonathan Keeling Francesca Marchetti (now Oxford) Marzena Szymanska (now Warwick) Cavendish Laboratory University of Cambridge

Jacek Kasprzak Le Si Dang Laboratoire de Spectrometrie Physique Grenoble

Also thanks to: Gavin Brown, Anson Cheung, Alexei Ivanov, Leonid Levitov, Richard Needs, Ben Simons, Sasha Balatsky, Yogesh Joglekar, Jeremy Baumberg, Leonid Butov, David Snoke, Benoit Deveaud

Issues for these lectures

- Characteristics of a Bose condensate
- Excitons, and why they might be candidates for BEC
 How do you make a BEC wavefunction based on pairs of fermions?
- BCS (interaction-driven high density limit) to Bose (low density limit) crossover
- Excitons may decay directly into photons

What happens to the photons if the "matter" field is coherent?

Two level systems interacting via photons

How do you couple to the environment?

Decoherence phenomena and the relationship to lasers

Excitons are the solid state analogue of positronium

Combined excitation is called a **polariton**

Outline

- General review
- Exciton condensation
 - mean field theory of Keldysh BCS analogy
 - BCS-BEC crossover
 - broken symmetries, tunnelling, and (absence of) superfluidity
- Polaritons (coherent mixture of exciton and photon)
 - mean field theory
 - BCS-BEC crossover (again) and 2D physics
 - signatures of condensation
 - disorder
 - pairbreaking
 - phase-breaking and decoherence
- Review of Experiment intermingled
- Other systems (if there is time)
 - quantum Hall bilayers
 - "triplons" in quantum spin systems
 - ultracold fermions and the Feshbach resonance

Background material and details for the lectures

I will not give detailed derivations in lectures, but they can all be found in these papers

Reviews

Bose-Einstein Condensation, ed Griffin, Snoke, and Stringari, CUP, (1995)

PB Littlewood and XJ Zhu, Physica Scripta T68, 56 (1996)

- P. B. Littlewood, P. R. Eastham, J. M. J. Keeling, F. M. Marchetti, B. D. Simons, M. H. Szymanska. J. Phys.: Condens. Matter 16 (2004) S3597-S3620. cond-mat/0407058
- J. Keeling, F. M. Marchetti, M. H. Szymanska, P. B. Littlewood, Semiconductor Science and Technology, 22,R1-26, 2007. condmat/0702166

Basic equilibrium models:

Mean field theory (excitons): C. Comte and P. Nozieres, J. Phys. (Paris),43, 1069 (1982); P. Nozieres and C. Comte, ibid., 1083 (1982); P. Nozieres, Physica 117B/118B, 16 (1983). Y.Lozovik and V Yudson, JETP Lett. 22, 274 (1975)
Mean field theory (polaritons): P. R. Eastham, P. B. Littlewood, Phys. Rev. B 64, 235101 (2001) cond-mat/0102009
BCS-BEC crossover (polaritons): Jonathan Keeling, P. R. Eastham, M. H. Szymanska, P. B. Littlewood, Phys. Rev. Lett. 93, 226403 (2004) cond-mat/0407076; Phys. Rev. B 72, 115320 (2005)
Effects of disorder: F. M. Marchetti, B. D. Simons, P. B. Littlewood, Phys. Rev. B 70, 155327 (2004) cond-mat/0405259

Decoherence and non-equilibrium physics

M. H. Szymanska, P. B. Littlewood, B. D. Simons, Phys. Rev. A 68, 013818 (2003) cond-mat/0303392

- M. H. Szymanska, J. Keeling, P. B. Littlewood Phys. Rev. Lett. 96 230602 (2006); cond-mat/0603447
- F. M. Marchetti, J. Keeling, M. H. Szymanska, P. B. Littlewood, Phys. Rev. Lett. 96, 066405 (2006) cond-mat/0509438
- M. H. Szymanska, J. Keeling, P. B. Littlewood, Physical Review B 75, 195331 (2007) cond-mat/0611456

Physical signatures

Y.Lozovik and V Yudson, JETP Lett. 22, 274 (1975) Fernandez-Rossier et al., Solid State Commun 108, 473 (1998) Alexander V. Balatsky, Yogesh N. Joglekar, Peter B. Littlewood, Phys. Rev. Lett. 93, 266801 (2004). cond-mat/0404033 Jonathan Keeling, L. S. Levitov, P. B. Littlewood, Phys. Rev. Lett. 92, 176402 (2004) cond-mat/0311032 P. R. Eastham, P. B. Littlewood cond-mat/0511702

Experiment

Bilayer excitons: Voros et al., Phys Rev. Lett 97, 016803 (2006) Polariton BEC in CdTe microcavities: Kasprzak et al, Nature, **443**, 409 (2006) GaN polariton laser: Christopoulos et al., Phys Rev Lett 98, 126405 (2007)

Excitons in semiconductors

Exciton - bound electron-hole pair (analogue of hydrogen, positronium) In GaAs, m^{*} ~ 0.1 m_e, ε = 13 Rydberg = 5 meV (13.6 eV for Hydrogen) Bohr radius = 7 nm (0.05 nm for Hydrogen) Measure density in terms of a dimensionless parameter r_s - average spacing between excitons in units of a_{Bohr} $1/n = \frac{4\pi}{3}a_{Bohr}^3r_s^3$

Interacting electrons and holes in double quantum well

Ignore interband exchange - spinless problem Ignore biexcitons - disfavoured by dipole-dipole repulsion

Coupled Quantum Wells

Neutral bosons with repulsive dipolar interaction in 2D

Binding energy few meV in GaAs Bohr radius ~ 10 nm

Long lifetime up to 100 nsec – recombination by tunnelling through barrier

Excitonic insulator

A dilute Bose gas should condense - generalisation to dense electron-hole system is usually called an excitonic insulator

Coherent wavefunction for condensate in analogy to BCS theory of superconductivity $\Phi_{BCS} = \prod_{k} \left[u_{k} + v_{k} a_{ck}^{+} a_{vk} \right] 0 \rangle; \quad \left| u_{k} \right|^{2} + \left| v_{k} \right|^{2} = 1$ [Keldysh and Kopaev 1964]

 u_k , v_k variational solutions of H = K.E. + Coulomb interaction

Same wavefunction can describe a Bose condensate of excitons at low density, as well as two overlapping Fermi liquids of electrons and holes at high density

Mean field theory of excitonic insulator

Special features: order parameter; gap

$$\left\langle a_{ck}^{+}a_{vk}^{-}\right\rangle = u_{k}v_{k} = \left(\Delta_{k}/2E_{k}^{-}\right); \quad E_{k} = \sqrt{\left(\varepsilon_{k}-\mu\right)^{2}+\Delta_{k}^{2}}$$

Excitation spectra

+(-)E_k is energy to add (remove) particle-hole pair from condensate (total momentum zero)

Mean field solution

$$\begin{split} H_{eh} &= \sum_{k} \left[\epsilon_{ck} a_{ck}^{\dagger} a_{ck} + \epsilon_{vk} a_{vk}^{\dagger} a_{vk} \right] + \frac{1}{2} \sum_{q} \left[V_{q}^{ee} \rho_{q}^{e} \rho_{-q}^{e} + V_{q}^{hh} \rho_{q}^{h} \rho_{-q}^{h} - 2V_{q}^{eh} \rho_{q}^{e} \rho_{-q}^{h} \right] \\ V_{q}^{ee} &= V_{q}^{hh} = 2\pi/q \quad ; \quad V_{q}^{eh} = 2\pi e^{-qd}/q \quad \rho_{q} = \sum_{k} a_{k+q}^{\dagger} a_{k} \quad \text{2D coulomb; layer separation } d \\ \epsilon_{vk} &= -E_{gap} - \epsilon_{ck} \qquad \text{Particle hole symmetry (a simplification)}^{*} \\ |\Psi_{0}\rangle &= \prod_{k} \left[u_{k} + v_{k} a_{ck}^{\dagger} a_{vk} \right] |\text{vac}\rangle ; \quad |u_{k}|^{2} + |v_{k}|^{2} = 1 \quad \cdot \text{Variational (BCS) wavefunction} \\ f &= \langle h_{eh} \rangle - \mu \langle n \rangle \qquad \cdot \text{Introduce chemical potential} \\ \epsilon_{k} &= \epsilon_{k} - \mu - 2\sum_{k'} V_{k-k'}^{ee} n_{k'} \qquad \text{Renormalised single particle energy} \\ \Delta_{k} &= 2\sum_{k'} V_{k-k'}^{eh} \left\langle a_{ck}^{\dagger} a_{hk} \right\rangle = \sum_{k'} V_{k-k'}^{eh} \Delta_{k'} / E_{k'} \qquad \text{Gap equation} \\ E_{k}^{2} &= \xi_{k}^{2} + \Delta_{k}^{2} \qquad \text{New spectrum of quasiparticles with gap} \end{split}$$

Comte and Nozieres, J.Phys. (Paris) 43, 1069 (1992) Zhu et al PRL 74, 1633 (1995)

* Parabolic dispersion means that plasma is always weakly unstable even as $r_{_{S}} \rightarrow 0$

2D exciton condensate: Mean field solution

Crossover from BCS to BEC

Smooth crossover between BCS-like fermi surface instability and exciton BEC

Model: 2D quantum wells separated by distance = 1 Bohr radius Zhu et al PRL 74, 1633 (1995)

2D BEC - no confining potential

Mean field - should be K-T transition, but OK to estimate energy scales

Excitons in coupled quantum wells

Stress trap

Snoke 2004

Excitons confined in stress-induced harmonic traps

Optical trap

Artificial trapping of a stable high-density dipolar exciton fluid

Gang Chen, Ronen Rapaport, L. N. Pffeifer, K. West, P.

M. Platzman, Steven Simon¹ and Z. Vörös, and D. Snoke²

cond-mat/0601719

Experimental signatures

- Phase-coherent luminescence order parameter is a macroscopic dipole Polarisation $P \propto \sum_{k} \left\langle a_{ck}^{\dagger} a_{vk} \right\rangle \propto \Delta e^{i\mu t}$ Should couple photons and excitons right from the start - polaritons Gap in absorption/luminescence spectrum Exciton - small and low intensity in BEC regime dispersion Light cone Momentum and energy-dependence of ۲ luminescence spectrum $I(k,\omega)$ gives direct measure of occupancy $n_k = \frac{1}{e^{\beta(E_k - \mu)} - 1}$ **I(k)**
 - 2D Kosterlitz-Thouless transition
 - confined in unknown trap potential
 - only excitons within light cone are radiative

In-plane momentum k

Angular profile of light emission

- Emitted photon carries momentum of electron-hole pair
- Condensation (to k_{//} ~ 0) then has signature in sharp peak for emission perpendicular to 2D trap.
- In 2D the phase transition is of Kosterlitz-Thouless type – no long range order below T_c
- Peak suppressed once thermally excited phase fluctuations reach size of droplet

$$R \approx \xi_T = \left(\frac{\lambda \rho}{4m}\right)^{1/2} \frac{1}{kT}$$

 $T < T_{BEC} / \ln(R/\xi_T)$

Keeling et al, cond-mat/0311032

Parameters estimated for coupled quantum wells of separation ~ 5 nm; trap size ~ 10 μ m; T_{BEC} ~ 1K

Vortices

Angular emission into θ_{x} , θ_{y}

Dipolar superfluid

- What could be the superfluid response?
 - exciton transport carries no charge or mass
 - in a bilayer have a static dipole

$$B(t) = B_o e^{i\omega t} \hat{z}$$
$$\Delta E = i\omega B_o d e^{i\omega t} \hat{x}$$
$$F = i\omega B_o e d e^{i\omega t} \hat{x}$$
$$j_{dipole} = \sigma(\omega) F$$

$$\sigma = \frac{i\rho_s}{\omega + i\delta} = \pi \rho_s \delta(\omega) + i \frac{\rho_s}{\omega}$$

"Pinning" of the phase by interlayer tunnelling shifts response to nonzero frequency

> Lozovik & Yudson 1975 Joglekar, Balatsky, PBL, 2004

Coupled quantum wells of electrons and holes

- Considerable effort being expended on this at the moment
- High densities have been reliably reached
- Several different kinds of traps have been demonstrated
- Not yet a reliable and convincing demonstration of BEC
- Except for electron bilayers in quantum Hall regime at ¹/₂ filling.

A very good wavefunction to capture the crossover from low to high density is BCS

$$|\Psi_0\rangle = \prod_k \left[u_k + v_k a_{ck}^{\dagger} a_{vk} \right] |\text{vac}\rangle; \quad |u_k|^2 + |v_k|^2 = 1$$

Just like a BCS superconductor, this has an order parameter, and a gap

$$\langle a_{ck}^+ a_{vk} \rangle = u_k v_k = (\Delta_k / 2E_k); \quad E_k = \sqrt{(\varepsilon_k - \mu)^2 + \Delta_k^2}$$

The order parameter has an undetermined phase -> superfluid.

Unfortunately, there are some terms in H that have been left out

Digression: tunnelling and recombination

- Our Hamiltonian has only included interaction between electron and hole densities, and no e-h recombination
- In a semimetal tunnelling between electron and hole pockets is allowed

If pockets related by symmetry, generates single particle terms $ta_{ck}^{\dagger}a_{vk}$

Rediagonalise $(\alpha_k, \beta_k) = \text{linear combinations of } (a_{vk}a_{ck})$

Introduces single particle gap

New Coulomb coupling terms V_1

$$V_1 t \ lpha^\dagger lpha^\dagger lpha eta \ , \quad V_2 t^2 \ lpha^\dagger lpha^\dagger eta eta \ ,$$

If pockets are unrelated by symmetry, still the eigenstates are Bloch states

$$\hat{V} = \sum_{n_1,...,n_4} \sum_{kk'q} \langle n_1k, n_2k' | V | n_3k' + q, n_4k - q
angle imes a_{n_1k}^{\dagger} a_{n_2k'}^{\dagger} a_{n_3k'+q} a_{n_4k-q}$$

In general, terms of the form $V_1 \ \alpha^\dagger \alpha^\dagger \alpha \beta \ , \quad V_2 \ \alpha^\dagger \alpha^\dagger \beta \beta \ .$

Most general Hamiltonian does not separately conserve particles and holes

Tunnelling and recombination - 2

• Single particle gap - trivial physics, no extra symmetry to break,...

E.g. Artificial 2D semimetal - GaSb/InAs interface electron-hole mixing introduces gap [Lakrimi et al 1997] In QH bilayers: tunnelling between layers -> S/AS splitting

Consider the effect of general Coulomb matrix elements at zeroth order

 $\left< lpha^{\dagger} eta \right> \propto |\Delta| e^{i \phi}$ Mean field approximation

$$\langle V_2 \alpha^{\dagger} \alpha^{\dagger} \beta \beta \rangle \propto V_2 |\Delta|^2 \cos(2\phi) \longrightarrow Jos$$

 $\left\langle V_{1}\alpha^{\dagger}\alpha^{\dagger}\alpha\beta\right\rangle \propto V_{1}n_{\alpha}|\Delta|\cos(\phi-\phi_{o})$

Josephson-like term; fixes phase; gapped Goldstone mode

Symmetry broken at all T; just like bandstructure gap

- No properties to distinguish this phase from a normal dielectric, except in that these symmetry breaking effects may be small
- In that case, better referred to as a commensurate charge density wave

Not unfamiliar or exotic at all (but not a superfluid either)

Tunnelling and recombination - 3

• If electron and hole not degenerate, recombination accompanied by emission of a photon

$$H_{dipole} = g\psi_q a^{\dagger}_{ck+q} a_{vk} + h.c. + \omega_q \psi^{\dagger}_q \psi_{-q}$$

• Evaluate at zeroth order

$$\left\langle H_{dipole} \right\rangle_{m.f.} = g \left\langle \psi_q \right\rangle |\Delta| e^{i\phi} e^{i(\omega_q - \mu)t} + c.c.$$

- Phase of order parameter couples to phase of electric field
- Resonant radiation emitted/absorbed at frequency = chemical potential
- Behaves just like an antenna (coherent emission, not incoherent luminescence)

Must include light and matter on an equal footing from the start - POLARITONS

Optical microcavities and polaritons

- Correct *linear* excitations about the ground state are mixed modes of excitonic polarisation and light - polaritons
- Optical microcavities allow one to confine the optical modes and control the interactions with the electronic polarisation
 - small spheres of e.g. glass
 - planar microcavities in semiconductors
 - excitons may be localised e.g. as 2-level systems rare earth ions in glass
 - RF coupled Josephson junctions in a microwave cavity

Resonantly pumped microcavity

Photoluminescence from non-resonantly pumped microcavity

PL normalised to pump intensity = – 4 meV Integrated intensity /Power (arb. u.) $\delta = -4 \text{ meV}$ Lower branch PL Intensity / Power (arb. u.) 1280 W/cm² 160 W/cm² Upper branch 80 W/cm² .1 20 W/cm² 1e-5 Tower Branch Energy (eV) 1.4665 1.4658 1.4658 1.4656 FWHM (meV) $\delta = -4 \text{ meV}$ b) 0.6 .01 Branch 0.001 1.464 1.468 1.472 Energy (eV) Upper Lower 1000 10 100 polariton polariton Power (W/cm²)

Excitation at ~ 1.7 eV

Senellart & Bloch, PRL 82, 1233 (1999)

Non-resonant(?) pumping in Lower Polariton Branch

Microcavity polaritons

Experiments: Kasprzak et al 2006 CdTe microcavities

II-VI quantum well microcavities

Increasing pumping

Kasprzak, Dang, unpublished

Distribution at varying density

Blue shift used to estimate density High energy tail of distribution used to fix temperature Onset of non-linearity gives estimate of critical density Linewidth well above transition is *inhomogeneous*

Measurement of first order coherence

Temperature and density estimates predict a phase coherence length ~ 5 μ m

Experiment also shows broken polarisation symmetry

Polariton condensates ?

- Composite particle mixture of electron-hole pair and photon
 - How does this affect the ground state ?
- Extremely light mass (~ 10^{-5} $\rm m_e)$ means that polaritons are large, and overlap strongly at low-density
 - BEC "BCS" crossover
- Two-dimensional physics
 - BKT
- Polariton lifetime is short
 - Non-equilibrium, pumped dynamics
 - Decoherence ?

Microcavity polaritons

A simplified model - the excitons are localised and replaced by 2-level systems and coupled to a single optical mode in the microcavity

Fermionic representation

- a_i creates valence hole, b_i^+ creates conduction electron on site i Photon mode couples equally to large number N of excitons since $\lambda >> a_{Bohr}$

R.H. Dicke, Phys.Rev.**93**,99 (1954) K.Hepp and E.Lieb, Ann.Phys.(NY) **76**, 360 (1973)

Localized excitons in a microcavity - the Dicke model

- Simplifications
 - Single cavity mode
 - Equilibrium enforced by not allowing excitations to escape
 - Thermal equilibrium assumed (at finite excitation)
 - No exciton collisions or ionisation (OK for dilute, disordered systems)
 Work in k-space, with Coulomb added then solution is extension of Keldysh mean field theory (used by Schmitt-Rink and Chemla for driven systems)
 Important issues are not to do with localisation/delocalisation or binding/unbinding of e-h pairs but with decoherence
- Important physics
 - Fermionic structure for excitons (saturation; phase-space filling)
 - Strong coupling limit of excitons with light
- To be added later
 - Decoherence (phase-breaking, pairbreaking) processes
 - Non-equilibrium (pumping and decay)

Localized excitons in a microcavity - the Dicke model

$$H = \sum_{i} \varepsilon_{i} \left(b_{i}^{+} b_{i}^{-} - a_{i}^{+} a_{i}^{-} \right) + \omega \psi^{+} \psi^{-} + \frac{g}{\sqrt{N}} \sum_{i} \left(b_{i}^{+} a_{i} \psi + \psi^{+} a_{i}^{+} b_{i}^{-} \right)$$

Excitation number (excitons + photons) conserved

$$L = \psi^{+}\psi + \frac{1}{2}\sum_{i} (b_{i}^{+}b_{i} - a_{i}^{+}a_{i})$$

Variational wavefunction (BCS-like) is exact in the limit $N \rightarrow \infty$, L/N ~ const. (easiest to show with coherent state path integral and 1/N expansion)

$$\left|\lambda, u, v\right\rangle = e^{\lambda \psi^{+}} \prod_{i} \left[v_{i} b_{i}^{+} + u_{i} a_{i}^{+} \right] 0 \rangle \qquad u_{i}^{2} + v_{i}^{2} = 1$$

Two coupled order parameters $\begin{cases} \text{Coherent photon field} & <\psi > \\ \text{Exciton condensate} & \sum_i < a_i^{\dagger}b_i > \end{cases}$

Excitation spectrum has a gap

PR Eastham & PBL, Solid State Commun. 116, 357 (2000); Phys. Rev. B 64, 235101 (2001)

Phase coherence

Hamiltonian as a spin model

$$H = \omega \psi^{\dagger} \psi + \sum_{i} \epsilon_{i} S_{i}^{z} + \frac{g}{\sqrt{N}} \sum_{i} \left[S_{i}^{+} \psi + S_{i}^{-} \psi^{\dagger} \right]$$

Another way to write the wavefunction - a ferromagnet

$$|\lambda, w_i\rangle = exp[\lambda\psi^{\dagger} + \sum_i w_i e^{i\theta_i} S_i^+] |0\rangle$$

Coherent ground state is phase locked - θ_i identical, self-consistent solution for λ , ω_i

$$\begin{split} (\omega - \mu)\lambda &= \frac{2g^{2\lambda}}{N} \sum \frac{1}{\sqrt{(\epsilon_{i} - \mu)^{2} + 4g^{2\lambda^{2}}}} \\ \text{vations of} \\ \text{solution by} \\ \text{solution by} \\ \text{solution by} \\ \text{round self-} \\ i\frac{d}{dt}S_{i}^{-} &= (\epsilon_{i} - \mu)S_{i}^{-} - \frac{2g}{\sqrt{N}} \sum_{i}S_{i}^{z}\psi \end{split}$$

From Heisenberg equations of motion get the same solution by treating spins as classical objects precessing around selfconsistently determined field

- coherent motion in classical electric field E(t) [Galitskii et al., JETP 30,117 (1970)]

Generalisation from S=1/2 to large S will describe coupled macroscopic oscillators, e.g. Josephson junctions in a microwave cavity

Dictionary of broken symmetries

• Connection to excitonic insulator generalises the BEC concept – different guises

$$e^{\lambda \sum_{k} \phi_{k} a_{ck}^{\dagger} a_{vk}} = \prod_{k} \left[1 + \lambda \phi_{k} a_{ck}^{\dagger} a_{vk} \right]$$

• Rewrite as spin model

$$S_{i}^{+} = a_{ci}^{\dagger}a_{vi}$$
; $S_{i}^{z} = a_{ci}^{\dagger}a_{ci} - a_{vi}^{\dagger}a_{vi}$

• XY Ferromagnet / Quantum Hall bilayer

$$|w_i\rangle = exp[\sum_i w_i e^{i\theta_i} S_i^+] |0\rangle$$

$$|\lambda, w_i\rangle = exp[\lambda\psi^{\dagger} + \sum_i w_i e^{i\theta_i} S_i^+] |0\rangle$$

• Charge or spin density wave

$$\sum_{k} \left\langle a_{mk+q}^{\dagger} a_{nk} \right\rangle = \rho_{mn}(q)$$

Dynamics – precession in self-consistent field

Condensation in the Dicke model (g/T = 2)

Excitation spectrum with inhomogeneous broadening

Polariton Condensation

Beyond mean field: Interaction driven or dilute gas?

Dilute gas BEC only for excitation levels $< 10^9$ cm⁻² or so

2D polariton spectrum

Phase diagram

- T_c suppressed in low density (polariton BEC) regime and high density (renormalised photon BEC) regimes
- For typical experimental polariton mass ~ 10⁻⁵ deviation from mean field is small

Microcavity polaritons – 2D physics

A simplified model – quantum dot excitons coupled to optical modes of microcavity

In thermal equilibrium, phase coherence – as in a laser – is induced by exchange of photons

Excitation spectrum in the condensed state has new branches which provide an experimental signature of self-sustained coherence

51

Excitation spectra in microcavities with coherence

Keeling, Eastham, Szymanska, PBL PRL 2004

Angular dependence of luminescence becomes sharply peaked at small angles (No long-range order because a 2D system)

Absorption(white) / Gain(black) spectrum of coherent cavity

Decoherence and the laser

Decay, pumping, and collisions may introduce "decoherence" loosely, lifetimes for the elementary excitations - include this by coupling to bosonic "baths" of other excitations

Decay, pumping, and collisions may introduce "decoherence" loosely, lifetimes for the elementary excitations - include this by coupling to bosonic "baths" of other excitations

➤ in analogy to superconductivity, the external fields may couple in a way that is "pair-breaking" or "non-pair-breaking"

$$\begin{split} \lambda_1 \sum_{i,k} (b_i^{\dagger} b_i - a_i^{\dagger} a_i) (c_{1,k}^{\dagger} + c_{1,k}) & \text{non-pairbreaking (inhomogeneous distribution of levels)} \\ \lambda_2 \sum_{i,k} (b_i^{\dagger} b_i + a_i^{\dagger} a_i) (c_{2,k}^{\dagger} + c_{2,k}) & \text{pairbreaking disorder} \end{split}$$

• Conventional theory of the laser assumes that the external fields give rise to rapid decay of the excitonic polarisation - incorrect if the exciton and photon are strongly coupled

 Correct theory is familiar from superconductivity - Abrikosov-Gorkov theory of superconductors with magnetic impurities

 $\lambda_3 \sum_{i,k} (b_i^{\dagger} a_i c_{3,k}^{\dagger} + a_i^{\dagger} b_i c_{3,k})$ symmetry breaking – XY random field destroys LRO

Detour - Abrikosov-Gorkov theory of gapless superconductivity

- Ordinary impurities that do not break time reversal symmetry are "irrelevant". Construct pairing between degenerate time-reversed pairs of states (Anderson's theorem)
- Fields that break time reversal (e.g. magnetic impurities, spin fluctuations) suppress singlet pairing, leading first to gaplessness, then to destruction of superconductivity [Abrikosov & Gorkov ZETF 39, 1781 (1960); JETP 12, 12243 (1961)]

8/7/2007

Phase diagram of Dicke model with pairbreaking

Pairbreaking characterised by a single parameter $\gamma = \lambda^2 N(0)$

Strong pairbreaking -> semiconductor laser

- order parameter mixed exciton/photon
- excitation spectrum has a gap

Decay, pumping, and collisions may introduce "decoherence" -

loosely, lifetimes for the elementary excitations - include this by coupling to bosonic "baths" of other excitations

in analogy to superconductivity, the external fields may couple in a way that is "pair-breaking" or "non-pair-breaking"

$$\begin{split} \lambda_1 \sum_{i,k} (b_i^{\dagger} b_i - a_i^{\dagger} a_i) (c_{1,k}^{\dagger} + c_{1,k}) & \text{non-pairbreaking (inhomogeneous distribution of levels)} \\ \lambda_2 \sum_{i,k} (b_i^{\dagger} b_i + a_i^{\dagger} a_i) (c_{2,k}^{\dagger} + c_{2,k}) & \text{pairbreaking disorder} \end{split}$$

• Conventional theory of the laser assumes that the external fields give rise to rapid decay of the excitonic polarisation - incorrect if the exciton and photon are strongly coupled

 Correct theory is familiar from superconductivity - Abrikosov-Gorkov theory of superconductors with magnetic impurities

 $\lambda_3 \sum_{i,k} (b_i^{\dagger} a_i c_{3,k}^{\dagger} + a_i^{\dagger} b_i c_{3,k})$ symmetry breaking – XY random field destroys LRO

Steady state system of pumped polaritons

- Simplest dynamical model for driven condensate
- Decay of photon mode
- Separate pumping of electron and hole by fermion baths (like an LED)
- Bogoliubov mode becomes diffusive at long length scales – merges with quasi-LRO of condensed system

Szymanska et al cond-mat/06

Damped, driven Gross-Pitaevski equation

• Microscopic derivation consistent with simple behavior at long wavelengths for the condensate order parameter ψ and polariton density n_R

$$\begin{split} i\frac{\partial\psi}{\partial t} &= \left\{ -\frac{\hbar\nabla^2}{2m_{LP}} + \frac{i}{2} \left[R(n_R) - \gamma \right] + g \left| \psi \right|^2 + 2\tilde{g} n_R \right\} \psi. \\ \frac{\partial n_R}{\partial t} &= P - \gamma_R n_R - R\left(n_R\right) \left| \psi\left(x \right) \right|^2 + D\nabla^2 n_R. \\ \omega_{\pm}(k) &= -\frac{i\Gamma}{2} \pm \sqrt{\omega_{Bog}(k)^2 - \frac{\Gamma^2}{4}}, \end{split}$$

From Wouters and Carusotto, cond-mat 0702431

kξ,

Distribution at varying density

Blue shift used to estimate density High energy tail of distribution used to fix temperature Onset of non-linearity gives estimate of critical density Linewidth well above transition is *inhomogeneous*

Comparison to recent experiments - density

7

FIG. 9: Mean-field phase diagram with superimposed data from the $T_{\rm cryo} = 25 {\rm K}$ measurements for $\omega_0 - E_{\rm x} = 5.06 {\rm meV}$ (effective detuning $\delta = +6 {\rm meV}$). The Kosterlitz-Thouless phase boundary (red) is explicitly plotted for a photonic mass $m_{\rm ph}^* = 3.96 \times 10^{-5} \ (m_{\rm pol}^* = 1.022 \times 10^{-4})$.

Appears to be well inside mean-field regime

8/7/2007

Linewidth

- Calclulation includes dephasing from pumping and decay
- Below threshold, linewidth narrows and intensity grows (critical fluctuations)
- Measured linewidth is consistent with dephasing that is weak enough to permit effects of condensation

Optical emission above threshold

```
Keeling et al., cond-mat/0603447
```

At low momenta, Goldstone-Bogoliubov mode becomes dissipative Non-linear emission dominates in experiment – no dynamical modes observed

Conclusions

- Excitonic insulator is a broad concept that logically includes CDW's, ferromagnets, quantum Hall bilayers as well as excitonic BEC
- Excitonic coherence oscillator phase-locking
 - enemy of condensation is decoherence
 - excitons are not conserved so *all* exciton condensates are expected to show coherence for short enough times only
 - condensates will either be diffusive (polaritons) or have a gap (CDW)
- BCS + pairbreaking or phasebreaking fluctuations gives a robust model that connects exciton/polariton BEC continuously to
 - semiconductor plasma laser (pairbreaking) or
 - solid state laser (phase breaking)
 - is a laser a condensate? largely semantic
- Now good evidence for polariton condensation in recent experiments