Functional RG for interacting fermions ...

Part Il: Functional RG for Fermi systems

A natural way of dealing with many energy scales in interacting electron systems

and a powerful source of new approximations.

e applicable to microscopic models (not only field theory)
e no adjustable parameters

e RG treatment of infrared singularities built in

1. Generating functionals
2. Exact flow equations

3. Truncations



1. Generating functionals

Interacting Fermi system with bare action
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V1, P Grassmann variables, K = quantum numbers + Matsubara frequency

C bare propagator, V[1,)] interaction
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Spin-2 fermions with momentum k and spin orientation o: K = (ko,k, o)

Bare propagator in case of translation and spin-rotation invariance:
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Two-particle interaction:
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Generating functional for connected Green functions
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Connected m-particle Green function
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Legendre transform of G[n, 7]: effective action
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Y[, Y] = Gn, 0]+ (Y,n) — (7,9) with wza—i and zp:a_g

generates one-particle irreducible (1P1) vertex functions I,
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Reciprocity relations:
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2. Exact flow equations

Impose infrared cutoff at energy scale A > 0, e.g. a momentum cutoff

CA(K) . @A<k)

=g with 0% (k) = O(|&| — A)

Momentum space region around
the Fermi surface excluded by a
sharp momentum cutoff in a 2D

lattice model

Cutoff regularizes divergence of C(K) in kg = 0, & = 0 (Fermi surface)

Other choices: smooth cutoff, frequency cutoff,

mixed momentum-frequency cutoff @A(\/ﬁﬁ + k%)



Cutoff excludes "soft modes” below scale A from functional integral.
A-dependent functionals G*[n, 7] and Y[1), 9]

Functionals G and Y recovered for A — 0.



Flow equation for T4, Wetterich '93, Morris '94, Salmhofer + Honerkamp '01
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(derivation later)

Expansion in fields:
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where S* = GAQAG™  ("single scale propagator”)

Expand Y*[1), 1] in powers of 1) and 1, compare coefficients =



Flow equations for self-energy ¥ = Q* — I'}*, two-particle vertex I'* =T'%,
and many-particle vertices 'Y, T}, etc.

Hierarchy of 1-loop diagrams; all one-particle irreducible



Initial conditions:

340 = bare single-particle potential (if any)

I'A0 = antisymmetrized bare two-particle interaction



Derivation of flow equation:
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= Flow equation for G*
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Legendre transform
T, 0] = G ™ 7t + (0, 0™) = (7%, 9)

Note that n™* and 7 are A-dependent functions of ) and .
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The total derivative acts also on the A-dependence of n** and 7.
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Insert flow equation for G* and use
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= Flow equation for T
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Alternative functional RG versions:

e Polchinski flow equations

e \Wick ordered flow equations



3. Truncations
Infinite hierarchy of flow equations usually unsolvable.

Two types of approximation:
e Truncation of hierarchy at finite order

e Simplified parametrization of effective interactions

Truncations can be justified for weak coupling or small phase space.



Simple truncations in one-particle irreducible fRG:

e Set 'Y = 0, neglect self-energy feedback in flow of I'*:

diAGg Unbiased stability analysis
d .\ W at weak coupling;
JF ) = d-wave superconductivity
Gf)\ in 2D Hubbard model

e Compute flow of self-energy with bare interaction (neglecting flow of I'*):

sh Captures properties
of isolated impurities
in 1D Luttinger liquid




Power counting:
Which interaction terms are important at low energy?

Conventional power counting procedure:
rescale momenta, frequencies and fields after mode elimination
such that quadratic part of action remains invariant;

see how iInteraction terms scale.

Consider 1D chiral Fermi system with
linear dispersion &, = vk at1T =0

Effective action

A
SA = /dko /_A dk (iko — vk) Y xWrg. ke — V[0, Y]



Mode elimination reduces A: A" =A/s, s > 1
Rescale momentum and frequency: k = k'/s, kg = ky/s = |kK'| <A
dko dk (iko — vk) = [dk{ dk’ (ik}y — vk')]/s"

Compensate by rescaling fields ¢ = s3/%, ) = s3/%)/

Now see scaling of interaction terms:

2-particle interaction: /H dkjod j &Z Y invariant, "marginal”
46

k-dependence of g:  ¢g(k) = g(0) + Zvjkj +...  irrelevant”

3-particle interaction:  (s72)% (s3/2)6 = 571 irrelevant if g3(0) finite

Usually ¢3(0) of order A= | Not irrelevant !



Power counting in d > 1 cannot be done (easily) by scaling, since
quadratic term cannot be restored by homogeneous scaling of momenta!

Better look directly at behavior of Feynman diagrams.

Interactions generally "less relevant” in d > 1
due to stronger phase space restrictions.



