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1. Luttinger liquids

One-dimensional interacting Fermi systems without correlation gaps
are Luttinger liquids.
(1D counterpart of Fermi liquid in 2D or 3D)

One-dimensional electron systems:

e Complex chemical compounds containing chains
e Quantum wires (in heterostructures)
e Carbon nanotubes

e Edge states

(Dekker's group)



Electronic structure of 1D systems:

_ _ _ er = k%/2m  (low carrier density)
Dispersion relations:
e, = —2tcosk  (tight binding)

"Fermi surface”: 2 points £kp | ' |

Dispersion relation near Fermi points:
€ — €F

approx. linear:

! ! szek—EF:’UF(“C‘—kF)




Electron-electron interaction:

has stronger effects than in 2D and 3D systems:
no fermionic quasi-particles, Fermi liquid theory not valid.
Fermi liquid replaced by Luttinger liquid:

e only bosonic low-energy excitations

(collective charge/spin density oscillations)

e power-laws with non-universal exponents

= Luttinger liquid theory



Bulk properties of Luttinger liquids:

e Bosonic low-energy excitations with linear dispersion relation
§o=ucq, & =usq (charge and spin channel)

=  specific heat cy x T

e DOS for single-electron excitations:
p(e)

D(e€) o |e—ep|®

vanishes at Fermi level (o > 0)

Ep

DOS in principle observable by photoemission or tunneling.



e Density-density correlation function N (q):

finite for ¢ — 0 (compressibility)
divergent as |q—2kp|™ “%*r for ¢ — 2kp

(2, > 0 for repulsive interactions)

= enhanced back-scattering (2kg) from impurity.

For spin-rotation invariant (and spinless) systems all exponents
can be expressed in terms of one parameter /<.



Asymptotic low energy behavior (power-laws) of Luttinger liquids
described by Luttinger model:

Hi = linear €, + forward scattering interactions

It is exactly solvable and scale-invariant (fixed point).

For spinless fermions only one coupling constant,

parametrizing interaction between left- and right-movers:

Hi =g [ dzna(a)n_(@



2. Impurity effects

How does a single non-magnetic impurity (potential scatterer) affect properties
of a Luttinger liquid?

long

® .
chain/wire

impurity
Non-interacting system:
Impurity induces Friedel oscillations (density oscillations with wave vector 2k )
DOS near impurity finite at Fermi level

Conductance reduced by a finite factor (transmission probability)



impurity in interacting system (spinless Luttinger liquid)

e \Weak impurity potential:

Backscattering amplitude V5, generated by impurity grows as Afr=1
for decreasing energy scale A.
(£, < 1 for repulsive interactions; Vs, is "relevant” perturbation of pure LL)

= Low energy probes see high barrier even if (bare) impurity potential is weak!

e Weak link:

tWl

DOS at boundary of LL vanishes as |e—€p|*8 =

Tunneling amplitude t,; between two weakly coupled
chains scales to zero as A®5 with ap = K, —1 >0 at low energy scales.

(tw1 is "irrelevant” perturbation of split chain)



Hypothesis (Kane, Fisher):

Any impurity effectively " cuts the chain” at low energy scales and
physical properties obey weak link or boundary scaling. =

DOS near impurity:

D;(e) x |e—ep|*B  for e —ep at T =0

Conductance through impurity:

G(T) < T?**5  for T — 0

supported within effective bosonic field theory by:

refermionization (Kane, Fisher '92)

QMC (Moon et al. '93; Egger, Grabert '95)
Bethe ansatz (Fendley, Ludwig, Saleur '95)



3. Microscopic model

Spinless fermion model:

t U nearest neighbor hopping ¢

o . o o . . nearest neighbor interaction U

Hsf = —1{ Zj (C;+1Cj + C;r-Cj_|_1) -+ UZJ ninj 41

Properties (without impurities):
e exactly solvable by Bethe ansatz
e Luttinger liquid except for |[U| > 2t at half-filling

e charge density wave for U > 2t at half-filling



Impurity potential added to bulk hamiltonian Hgs:
. _ t
general form:  Hiy,, = Z V. CiiCj
"site impurity” :
Hipp = Vnj,  (jo impurity site)

"hopping impurity" :
Himp — (t - t/> (C;r'o-l-lcjo + Cj'och‘f‘l)

Later also double barrier (two site or hopping impurities)



4. Flow equations

Starting point (for approximations):

Exact hierarchy of differential flow equations for 1-particle irreducible vertex
functions with infrared cutoff A:

etc. for I‘é\, Fff,

where
1 dGA

R (D ) A B

O —xrad]



Cutoff:
At T = 0 sharp frequency cutoff: G) = O(Jw| — A) Gy

At finite T' (discrete Matsubara frequencies) soft cutoff with width 277

(G bare propagator without impurities and interaction



Approximations:

Scheme 1 (first order):

Approximate T'A ~ T'A” (ignore flow of 2-particle vertex)

= YA tridiagonal matrix in real space ﬁZA -

Flow equation very simple; at T = O:

d A d

d—AZJJ — S‘ Sj G]-FS,]—FS Zw) dA jj:l:l 271‘ Z Gj j:i:l Zw
s +1w=+A w==FA

where G (iw) = Gy (iw) — B4

Kane/Fisher physics already qualitatively captured !



Scheme 2 (second order):

Neglect I'Y; approx. I'* by flowing nearest neighbor interaction U*

= 1-loop flow for U*; flow of ¥4 as in scheme 1 with renormalized U

d

d
A
d—AZJ] Z Z G]‘FS:J‘FS (iw) A inl Z ijil iw)
s=+1w=+A w==+A

Works quantitatively even for rather big U



Derivation of flow equation (scheme 1):

Flow equation for self-energy:

d A, ., - iws0 QA / I ol
2 (1, 1) ==T) ™20 §%2,2)Ty(1',2;1,2) d A r

2,2/ dA -
Single-scale propagator
1 OGH 1
1 —GiXA OA 1 —XAGYH

51 = GAOA(GY) TG =

Self-energy and propagator diagonal in frequency: wi = wyr and wy = woyr.

I'y fregency-independent = > frequency-independent.



Sharp frequency cutoff (T' = 0):  G{(iw) = O(Jw|—A) Go(iw) =

SA (iw) = ! !

1 — O(|w|—A)Go(iw)XA O(jw] = 1) Goliw) 1 — O(|w|—AN)ZAG(iw)
0(.) meets O(.): ill defined!

Consider regularized (smeared) step functions O, with 6. = ©,
then take limit ¢ — 0, using

proof:

/dx 5.(z —A) flz,0.(x — )] =3 g F(A, 1)

0 substitution ¢ = O,

Integration can be done analytically, yielding

d +
A L S \ 5 Vw0 AA 0
clA 91 J1 ¢ G] 2,74 zw) Fjl 75301592

w :i:A ]2]2

where G (iw) =[Gy ! (iw) — 241



Insert real space structure of bare vertex for spinless fermions

with nearest neighbor interaction U:

0 _
ro =
J1:79371,72

Uji,jo = U (0j;,jo—1 + 0jy jot1)

1o (04, 105, 41— 04, 5105 1)

.717.]1 .727.]2 ]17]2 ]27]1

= Flow equations

d A zw0+
d—Azj,j — Y Y € ]+87J+3(2w)
s +1 w=4+A
d A iw0™T
d—AZj,jil Gy Z ™! G;gil(w)
w==A
iw0T

Convergence factor e matters only for A — oc



Initial condition at A = Ay — o0

S0 g E Y,
31,11 JlJ TS 7153259132

where ij/ is the bare impurity potential and

the second term is due to the flow from oo to Ay (1)

Flow equations at finite temperatures 1" > 0:

Replace w = £A by w = £ w?’ in flow equations,

where w” is the Matsubara frequency most close to A.



Calculation of conductance:

Interacting chain connected to semi-infinite non-interacting leads

via smooth or abrupt contacts

lead interacting chain/wire lead
-—ee®
contact impurity contact
62
Conductance  G(T') = —g/dEf’(e) t(e)]*  with  [t(e)]* o< |G n ()]

Propagator G1 n(€) calculated in presence of leads, which affect the interacting
region only via boundary contributions ¥1 1(€) and X n(€) to the self-energy

Vertex corrections vanish within our approximation (no inelastic scattering)



fRG features:

e perturbative in U (weak coupling)

e non-perturbative in impurity strength

e arbitrary bare impurity potential (any shape)

e full effective impurity potential
(cf. : only Vay,.)

e cheap numerics up to 10° sites for 7 > 0 and 107 sites at 7' = 0.

e captures all scales, not just asymptotics.



5. Results

Renormalized impurity potential (from self-energy ¥,; at A = 0):

0.4
0.2 Vv i
0 { b
N — e
aso 500 - 550
J
long-range 2kp-oscillations | (associated with Friedel oscillations of density)

2k p-oscillations also in renormalized hopping amplitude around impurity



Results for local DOS near impurity site:
(half-filling, ground state, U =1, V' =1.5, 1000 sites)
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Strong suppression of DOS near Fermi level
Power law with boundary exponent a.p for w — 0, N — oc

Spectral weight at w = 0 in good agreement with DMRG for U < 2.
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Log. derivative of spectral weight

at Fermi level as fct. of system size:

e near boundary (solid lines)
e near hopping impurity (dashed lines)

circles: quarter-filling, U = 0.5 B
o 102 10° 10% 10° 10°
squares: quarter-filling, U = 1.5 I
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open symbols: fRG
filled symbols: DMRG

top panel: without vertex renorm.

bottom panel: with vertex renorm.

horizontal lines:

exact boundary exponents




Friedel oscillations from open boundaries:

(half-filling, ground state)

N=128, U=1
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Excellent agreement between fRG and DMRG



One parameter scaling of conductance (7" = 0):

Single impurity, smooth contacts: G(N) = < G (x) , = [N/No(U,V)|* =&
. | ‘L‘Jf(‘)-? | . U=2.23
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Conductance at T' > 0 — smooth contacts

V=10, N=10" U=0.5, N=10"

G/(e°/h)

Asymptotic power law G(T') oc T?* reached on accessible scales only for

sufficiently strong impurities



Resonant tunneling through double barrier:
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AGate voltage (mV) (Dekker's group '01)

Treated theoretically by many groups; controversial results !
Model setup:

l gate voltage



Resonance peaks in conductance as a function of gate voltage:

N,=6, V=10, U=0.5, N=10"
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At T = 0, width w ~ N#—1

T-dependence of |t(¢)|? important



fRG results for G (1) (symmetric double barrier):

V,=0.8, U=1.5, N=10"
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Various distinctive power laws, in particular
e exponent 2ap (looks like independent impurities in series)

e exponent ap — 1 ("uncorrelated sequential tunneling”)

No indications of exponent 2a g — 1 ("correlated sequential tunneling”)



Summary . . .

e fRG is reliable and flexible tool to study Luttinger liquids with impurities
e can be applied to microscopic models, restricted to "weak” coupling

e provides simple physical picture

e interplay of contacts, impurities, and correlations

e method covers all energy scales

e resonant tunneling: universal behavior and crossover captured



.. and outlook

include spin
(extended Hubbard model:

more complex geometries

(Y-junctions:
include bulk anomalous dimension
include inelastic processes

extend to non-linear transport



