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1. Luttinger liquids

One-dimensional interacting Fermi systems without correlation gaps

are Luttinger liquids.

(1D counterpart of Fermi liquid in 2D or 3D)

One-dimensional electron systems:

• Complex chemical compounds containing chains

• Quantum wires (in heterostructures)

• Carbon nanotubes

• Edge states

(Dekker’s group)



Electronic structure of 1D systems:

Dispersion relations:
εk = k2/2m (low carrier density)

εk = −2t cos k (tight binding)

”Fermi surface”: 2 points ±kF
0 F

k-k F k

Dispersion relation near Fermi points:

kε

F
k

− εF

-k F k

approx. linear:

ξk = εk − εF = vF (|k| − kF )



Electron-electron interaction:

has stronger effects than in 2D and 3D systems:

no fermionic quasi-particles, Fermi liquid theory not valid.

Fermi liquid replaced by Luttinger liquid:

• only bosonic low-energy excitations

(collective charge/spin density oscillations)

• power-laws with non-universal exponents

⇒ Luttinger liquid theory

Review: T. Giamarchi: Quantum physics in one dimension (2004)



Bulk properties of Luttinger liquids:

• Bosonic low-energy excitations with linear dispersion relation

ξcq = uc q , ξsq = us q (charge and spin channel)

⇒ specific heat cV ∝ T

• DOS for single-electron excitations:

D(ε) ∝ |ε−εF |α

vanishes at Fermi level (α > 0)

ρ(ε)

F εε

DOS in principle observable by photoemission or tunneling.



• Density-density correlation function N(q):

finite for q → 0 (compressibility)

divergent as |q−2kF |−α2kF for q → 2kF

(α2kF > 0 for repulsive interactions)

⇒ enhanced back-scattering (2kF ) from impurity.

For spin-rotation invariant (and spinless) systems all exponents

can be expressed in terms of one parameter Kρ.



Asymptotic low energy behavior (power-laws) of Luttinger liquids

described by Luttinger model:

HLM = linear εk + forward scattering interactions

It is exactly solvable and scale-invariant (fixed point).

For spinless fermions only one coupling constant,

parametrizing interaction between left- and right-movers:

HI = g

∫

dxn+(x)n−(x)



2. Impurity effects

How does a single non-magnetic impurity (potential scatterer) affect properties

of a Luttinger liquid?

 

 

long
chain/wire

impurity

Non-interacting system:

Impurity induces Friedel oscillations (density oscillations with wave vector 2kF )

DOS near impurity finite at Fermi level

Conductance reduced by a finite factor (transmission probability)



Kane, Fisher ’92: impurity in interacting system (spinless Luttinger liquid)

• Weak impurity potential:

Backscattering amplitude V2kF generated by impurity grows as ΛKρ−1

for decreasing energy scale Λ.

(Kρ < 1 for repulsive interactions; V2kF is ”relevant” perturbation of pure LL)

⇒ Low energy probes see high barrier even if (bare) impurity potential is weak!

• Weak link:

wlt

DOS at boundary of LL vanishes as |ε−εF |αB ⇒

Tunneling amplitude twl between two weakly coupled

chains scales to zero as ΛαB with αB = Kρ
−1 − 1 > 0 at low energy scales.

(twl is ”irrelevant” perturbation of split chain)



Hypothesis (Kane, Fisher):

Any impurity effectively ”cuts the chain” at low energy scales and

physical properties obey weak link or boundary scaling. ⇒

DOS near impurity:

Di(ε) ∝ |ε−εF |αB for ε→ εF at T = 0

Conductance through impurity:

G(T ) ∝ T 2αB for T → 0

supported within effective bosonic field theory by:

refermionization (Kane, Fisher ’92)

QMC (Moon et al. ’93; Egger, Grabert ’95)

Bethe ansatz (Fendley, Ludwig, Saleur ’95)



3. Microscopic model

Spinless fermion model:

t U nearest neighbor hopping t

nearest neighbor interaction U

Hsf = −t
∑

j

(

c†j+1cj + c†jcj+1

)

+ U
∑

j njnj+1

Properties (without impurities):

• exactly solvable by Bethe ansatz

• Luttinger liquid except for |U | > 2t at half-filling

• charge density wave for U > 2t at half-filling



Impurity potential added to bulk hamiltonian Hsf:

general form: Himp =
∑

j,j′

Vj′j c
†
j′cj

”site impurity”:

Himp = V nj0 (j0 impurity site)

”hopping impurity”:

Himp = (t− t′)
(

c†j0+1cj0 + c†j0cj0+1

)

Later also double barrier (two site or hopping impurities)



4. Flow equations

Starting point (for approximations):

Exact hierarchy of differential flow equations for 1-particle irreducible vertex

functions with infrared cutoff Λ:

S Λ

Γ Λ
d

ΣΛ
d

d Λ
d Γ

S Λ

GΛ

+

Γ Λ
3

Λ =

=Λ

etc. for ΓΛ
3 , ΓΛ

4 , . . .

where

GΛ =
[

(GΛ
0 )−1 − ΣΛ

]−1
SΛ =

[

1−GΛ
0 ΣΛ

]−1 dGΛ
0

dΛ
[

1− ΣΛGΛ
0

]−1



Cutoff:

At T = 0 sharp frequency cutoff: GΛ
0 = Θ(|ω| − Λ)G0

At finite T (discrete Matsubara frequencies) soft cutoff with width 2πT

G0 bare propagator without impurities and interaction



Approximations:

Scheme 1 (first order):

Approximate ΓΛ ≈ ΓΛ0
(ignore flow of 2-particle vertex)

⇒ ΣΛ tridiagonal matrix in real space

S Λ

Γ
d

ΣΛ
d Λ =

0

Flow equation very simple; at T = 0:

d

dΛ
ΣΛ
j,j = − U

2π

∑

s=±1

∑

ω=±Λ

G̃Λ
j+s,j+s(iω)

d

dΛ
ΣΛ
j,j±1 =

U

2π

∑

ω=±Λ

G̃Λ
j,j±1(iω)

where G̃Λ(iω) = [G−1
0 (iω)− ΣΛ]−1.

Kane/Fisher physics already qualitatively captured !



Scheme 2 (second order):

Neglect ΓΛ
3 ; approx. ΓΛ by flowing nearest neighbor interaction UΛ

⇒ 1-loop flow for UΛ; flow of ΣΛ as in scheme 1 with renormalized UΛ

d

dΛ
ΣΛ
j,j = −U

Λ

2π

∑

s=±1

∑

ω=±Λ

G̃Λ
j+s,j+s(iω)

d

dΛ
ΣΛ
j,j±1 =

UΛ

2π

∑

ω=±Λ

G̃Λ
j,j±1(iω)

Works quantitatively even for rather big U



Derivation of flow equation (scheme 1):

Flow equation for self-energy:

d

dΛ
ΣΛ(1′, 1) = −T

∑

2,2′

eiω20+
SΛ(2, 2′) Γ0(1′, 2′; 1, 2)

S Λ

Γ
d

ΣΛ
d Λ =

0

Single-scale propagator

SΛ = GΛ[∂Λ(GΛ
0 )−1]GΛ = − 1

1−GΛ
0 ΣΛ

∂GΛ
0

∂Λ
1

1− ΣΛGΛ
0

Self-energy and propagator diagonal in frequency: ω1 = ω1′ and ω2 = ω2′.

Γ0 freqency-independent ⇒ Σ frequency-independent.



Sharp frequency cutoff (T = 0): GΛ
0 (iω) = Θ(|ω|−Λ)G0(iω) ⇒

SΛ(iω) =
1

1−Θ(|ω|−Λ)G0(iω)ΣΛ
δ(|ω|−Λ)G0(iω)

1
1−Θ(|ω|−Λ)ΣΛG0(iω)

δ(.) meets Θ(.): ill defined!

Consider regularized (smeared) step functions Θε with δε = Θ′ε ,

then take limit ε→ 0, using
∫

dx δε(x− Λ) f [x,Θε(x− Λ)] ε→0−→
∫ 1

0

dt f(Λ, t)
proof:

substitution t = Θε

Integration can be done analytically, yielding

d

dΛ
ΣΛ
j′1,j1

= − 1
2π

∑

ω=±Λ

∑

j2,j
′
2

eiω0+
G̃Λ
j2,j
′
2
(iω) Γ0

j′1,j
′
2;j1,j2

where G̃Λ(iω) = [G−1
0 (iω)− ΣΛ]−1



Insert real space structure of bare vertex for spinless fermions

with nearest neighbor interaction U :

Γ0
j′1,j
′
2;j1,j2

= Uj1,j2 (δj1,j′1δj2,j′2 − δj1,j′2δj2,j′1)

Uj1,j2 = U (δj1,j2−1 + δj1,j2+1)

⇒ Flow equations

d

dΛ
ΣΛ
j,j = − U

2π

∑

s=±1

∑

ω=±Λ

eiω0+
G̃Λ
j+s,j+s(iω)

d

dΛ
ΣΛ
j,j±1 =

U

2π

∑

ω=±Λ

eiω0+
G̃Λ
j,j±1(iω)

Convergence factor eiω0+
matters only for Λ→∞



Initial condition at Λ = Λ0 →∞:

ΣΛ0
j1,j
′
1

= Vj1,j′1 +
1
2

∑

j2

Γ0
j′1,j2;j1,j2

where Vj1,j′1 is the bare impurity potential and

the second term is due to the flow from ∞ to Λ0 (!)

Flow equations at finite temperatures T > 0:

Replace ω = ±Λ by ω = ±ωΛ
n in flow equations,

where ωΛ
n is the Matsubara frequency most close to Λ.



Calculation of conductance:

Interacting chain connected to semi-infinite non-interacting leads

via smooth or abrupt contacts

contact contact

lead lead

impurity

interacting chain/wire

Conductance G(T ) = −e
2

h

∫

dε f ′(ε) |t(ε)|2 with |t(ε)|2 ∝ |G1,N(ε)|2

Propagator G1,N(ε) calculated in presence of leads, which affect the interacting

region only via boundary contributions Σ1,1(ε) and ΣN,N(ε) to the self-energy

Vertex corrections vanish within our approximation (no inelastic scattering)

(see Oguri ’01)



fRG features:

• perturbative in U (weak coupling)

• non-perturbative in impurity strength

• arbitrary bare impurity potential (any shape)

• full effective impurity potential

(cf. Matveev, Yue, Glazman ’93: only V2kF )

• cheap numerics up to 105 sites for T > 0 and 107 sites at T = 0.

• captures all scales, not just asymptotics.



5. Results

Renormalized impurity potential (from self-energy Σjj at Λ = 0):
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long-range 2kF -oscillations ! (associated with Friedel oscillations of density)

2kF -oscillations also in renormalized hopping amplitude around impurity



Results for local DOS near impurity site:

(half-filling, ground state, U=1, V =1.5, 1000 sites)
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red: Lutt. liquid

green: Fermi gas

Strong suppression of DOS near Fermi level

Power law with boundary exponent αB for ω → 0, N →∞

Spectral weight at ω = 0 in good agreement with DMRG for U < 2.



Log. derivative of spectral weight

at Fermi level as fct. of system size:

• near boundary (solid lines)

• near hopping impurity (dashed lines)

circles: quarter-filling, U = 0.5
squares: quarter-filling, U = 1.5

open symbols: fRG

filled symbols: DMRG

top panel: without vertex renorm.

bottom panel: with vertex renorm.

horizontal lines:

exact boundary exponents
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Friedel oscillations from open boundaries:

(half-filling, ground state)
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Excellent agreement between fRG and DMRG



One parameter scaling of conductance (T = 0):

Single impurity, smooth contacts: G(N) = e2

h G̃K(x) , x = [N/N0(U, V )]1−K

10-2 10-1 100 101

x=[N/N0(U,V)](1-K)

10-4

10-3

10-2

10-1

100

G
/(e

2 /h
)

U=0.5

1-x2
x-2/K

10-1 100 101 102

x=[N/N0(U,V)]1/2

10-8

10-6

10-4

10-2

100

G
/(e

2 /h
)

U=2.23

Crossover size

as function of bare

reflection amplitude

0.0 0.2 0.4 0.6 0.8 1.0
|R|

10-6

100

106

1012

N
0(U

,V
)

U=0.5
U=1
U=2.23



Conductance at T > 0 — smooth contacts
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Asymptotic power law G(T ) ∝ T 2α reached on accessible scales only for

sufficiently strong impurities



Resonant tunneling through double barrier:

(Dekker’s group ’01)

Treated theoretically by many groups; controversial results !

Model setup:

gate voltage
smooth



Resonance peaks in conductance as a function of gate voltage:

-2 0 2
Vg

0.00

0.01

0.02

0.03
G

/(e
2 /h

)
T=0.3
T=0.1
T=0.03
T=0

ND=6, Vl/r=10, U=0.5, N=104

At T = 0, width w ∼ NK−1

T -dependence of |t(ε)|2 important



fRG results for Gp(T ) (symmetric double barrier):
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Various distinctive power laws, in particular (Furusaki, Nagaosa ’93,’98):

• exponent 2αB (looks like independent impurities in series)

• exponent αB − 1 (”uncorrelated sequential tunneling”)

No indications of exponent 2αB − 1 (”correlated sequential tunneling”)



Summary . . .

• fRG is reliable and flexible tool to study Luttinger liquids with impurities

• can be applied to microscopic models, restricted to ”weak” coupling

• provides simple physical picture

• interplay of contacts, impurities, and correlations

• method covers all energy scales

• resonant tunneling: universal behavior and crossover captured



. . . and outlook

• include spin

(extended Hubbard model: Andergassen et al., PRB 73, 045125 (2006))

• more complex geometries

(Y-junctions: Barnabé-Thériault et al., PRL 94, 136405 (2005))

• include bulk anomalous dimension

• include inelastic processes

• extend to non-linear transport


