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Classes of topologically distinct Hamiltonians 2
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Application of topological classes 3
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Topological invariants 4

Mathematical expressions which take integer values and 
change only if     acquires a zero eigenvalue 
(acquires zero energy)

H

For example: N0 = # of levels below zero

very simple topological invariant

But there are many more less trivial invariants
(more on that later)
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Example: particle in 2D in a magnetic field 5
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ny Square lattice in 2D The spectrum consists of 1/q-bands (or 
“Landau levels”)

It is not possible to change the number 
of bands below 0 by smoothly changing 
the Hamiltonian (including by changing μ) 
without tuning through a point with zero 
energy single-particle states

(Thouless et al, 1982)

Bloch waves

topological invariant (Chern number)

E
n

(k
x

, k
y

)
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x

,n
y

+1ânx
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Chern number in terms of Green’s functions 6
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Chern number (an alternative form)
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The only way to change N2 is by making G singular.
That requires       to have zero energy eigenvalues. H

α, β, γ take values ω, kx, ky
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Edge states 7

Particle hopping on a 
lattice with
2π/3 magnetic flux 
through each plaquette

Periodic boundary conditions 
in the y-direction
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Edge states 7

Particle hopping on a 
lattice with
2π/3 magnetic flux 
through each plaquette

Hard wall boundary 
conditions in the y-direction
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Edge states as a result of topology 8
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Other topological classes? 9

For a long time 2D particle in a magnetic field was considered to be the only example of 
topological classes of single-particle Hamiltonians

Generalizations to 4D, 6D, generally even d, was known, however
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d must be even all α take values ω, k1, k2, ..., kd 

Topological classes in high dimensions - perhaps not very physical

⇡d+1 (GL(N ,C) = Zexistence of this topological invariant reflects the homotopy class
if d is even

Fortunately, it turns out these are not the only topological insulators
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Chiral systems 10

What if we have Hamiltonians with a special symmetry
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Ĥ =
X

n

h
t1 â
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Example: systems with 
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Topological invariant for chiral systems 11
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Topological invariant for chiral systems 11
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Topological invariant for chiral systems 11
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Topological invariant for chiral systems 11
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Edge states for 1D chiral systems 12
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Symmetry classes 13

Class A (no symmetry)

Class AIII (chiral symmetry) Z

Z

Z

Z

Z

Z

1      2     3    4     5     6space dimension

Altland-Zirnbauer 
nomenclature
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Other relevant symmetries 14

Time reversal

U †
TH⇤UT = H

U †
TH⇤UT = H

U †
TH⇤UT = H U⇤

TUT =

⇢
either +1

or �1

Particle-hole 
conjugation U †

CH⇤UC = �H U⇤
CUC =

⇢
either +1

or �1

If both symmetries are present, chiral symmetry
is automatically present, with ⌃ = U⇤

TUC

7

Table 1. Listed are the ten generic symmetry classes of single-particle
Hamiltonians H, classified according to their behavior under time-reversal
symmetry (T ), charge-conjugation (or particle–hole) symmetry (C), as well
as ‘sublattice’ (or ‘chiral’) symmetry (S). The labels T, C and S represent
the presence/absence of time-reversal, particle–hole and chiral symmetries,
respectively, as well as the types of these symmetries. The column entitled
‘Hamiltonian’ lists, for each of the ten symmetry classes, the symmetric space of
which the quantum mechanical time-evolution operator exp(itH) is an element.
The column ‘Cartan label’ is the name given to the corresponding symmetric
space listed in the column ‘Hamiltonian’ in Élie Cartan’s classification scheme
(dating back to the year 1926). The last column entitled ‘G/H (ferm. NL�M)’
lists the (compact sectors of the) target space of the NL�M describing Anderson
localization physics at long wavelength in this given symmetry class.
Cartan label T C S Hamiltonian G/H (ferm. NL�M)

A (unitary) 0 0 0 U(N ) U(2n)/U(n) ⇥ U(n)

AI (orthogonal) +1 0 0 U(N )/O(N ) Sp(2n)/Sp(n) ⇥ Sp(n)

AII (symplectic) �1 0 0 U(2N )/Sp(2N ) O(2n)/O(n) ⇥ O(n)

AIII (ch. unit.) 0 0 1 U(N + M)/U(N ) ⇥ U(M) U(n)

BDI (ch. orth.) +1 +1 1 O(N + M)/O(N ) ⇥ O(M) U(2n)/Sp(2n)

CII (ch. sympl.) �1 �1 1 Sp(N + M)/Sp(N ) ⇥ Sp(M) U(2n)/O(2n)

D (BdG) 0 +1 0 SO(2N ) O(2n)/U(n)

C (BdG) 0 �1 0 Sp(2N ) Sp(2n)/U(n)

DIII (BdG) �1 +1 1 SO(2N )/U(N ) O(2n)

CI (BdG) +1 �1 1 Sp(2N )/U(N ) Sp(2n)

The only case when the behavior under the combined transformation S = T · C is not determined
by the behavior under T and C is the case where T = 0 and C = 0. In this case, either S = 0
or S = 1 is possible. This then yields (3 ⇥ 3 � 1) + 2 = 10 possible types of behavior of the
Hamiltonian.

The list of ten possible types of behavior of the first quantized Hamiltonian under T , C
and S is given in table 1. These are the ten generic symmetry classes (the ‘tenfold way’),
which are the framework within which the classification scheme of topological insulators
(superconductors) is formulated.

Let us first point out a very general structure seen in table 1. This is listed in the column
entitled ‘Hamiltonian’. When the first quantized Hamiltonian H is ‘regularized’ (or ‘put on’)
a finite lattice, it becomes an N ⇥ N matrix (as discussed above). The entries in the column
‘Hamiltonian’ specify the type of N ⇥ N matrix that the quantum mechanical time-evolution
operator exp(itH) is. For example, for systems that have no time-reversal or charge-conjugation
symmetry properties at all, i.e. for which T = 0, C = 0, S = 0, which are listed in the first row
of the table, there are no constraints on the Hamiltonian except for Hermiticity. Thus, H is a
generic Hermitian matrix and the time-evolution operator is a generic unitary matrix, so that
exp(itH) is an element of the unitary group U(N ) of unitary N ⇥ N matrices. By imposing
time-reversal symmetry (for a system that has, e.g., no other degree of freedom such as, e.g.,
spin), there exists a basis in which H is represented by a real symmetric N ⇥ N matrix. This,
in turn, can be expressed as saying that the time-evolution operator is an element of the coset

New Journal of Physics 12 (2010) 065010 (http://www.njp.org/)

From
: Ryu, Schnyder, 

Furusaki, Ludw
ig, 2010 

This leads to 10 
“symmetry classes”,

introduced by 
Altland and Zirnbauer
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Classes with time reversal invariance only 15

Time reversal U⇤
TUT =

⇢
either +1

or �1

Class AI: time reversal for spinless particles or 
spin rotation invariant Hamiltonians

U †
TH⇤(�k)UT = H(k)

Class AII: time reversal for spin-dependent 
spin-1/2 Hamiltonians (usually implies spin-orbit 
coupling)

Example: H↵�(k) =
k2

2m
�↵� ↵,� =", #

H↵�(k) =
k2

2m
�↵� + gSO

X

µ

kµ�
µ
↵,�

�yH⇤
↵�(�k)�y = H(k) UT = �y UTU

⇤
T = �1
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Only time-reversal is present 16

These are classes AI, AII
G = [i! �H]�1

U †
TG

TUT = G

Nd = �
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d
2

�
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(2⇡i)
d
2+1(d+ 1)!
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✏↵0↵1...↵d

Z
d!ddk tr

⇥
G�1@↵0GG�1@↵1G . . .G�1@↵dG

⇤
Applying the symmetry to G, we can show that the invariant is identically zero if d = 2 + 4n

Consequence: no topological band structure for time reversal invariant systems in 2D.
This is not quite true, however - there is a different topological invariant we haven’t yet looked at.

Class A (no symmetry)

Class AI (time reversal) Z

Z

Z

Z ZZ

1      2     3      4     5      6         7        8    space dimension

Class AII (time reversal with
spin-1/2) Z Z

Green’s function 
transposed

GT
ab(k) = Gba(�k)
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Only particle-hole is present 17

These are classes D, C
U †
CH⇤UC = �H
G = [i! �H]�1
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d = 4n

Class A (no symmetry)

Class D (p-h,                 ) Z

Z

Z

Z ZZ

1      2     3      4     5      6         7        8    space dimension

Class C (p-h,                     )  Z Z

UCU
⇤
C = 1

UCU
⇤
C = �1
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The origin of p-h symmetry 18
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âi
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This is class D

BCS superconductor

This describes Bogoliubov quasiparticles

Famous example: px+i py spin-polarized superconductor (important: it breaks time reversal)
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The origin of p-h symmetry 18
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Class C 19

BCS spin-singlet superconductor
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Classes with both TR and PH 20

Automatically have chiral symmetry. Topological invariant in odd dimensional space.
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Example: class DIII 21

7

Table 1. Listed are the ten generic symmetry classes of single-particle
Hamiltonians H, classified according to their behavior under time-reversal
symmetry (T ), charge-conjugation (or particle–hole) symmetry (C), as well
as ‘sublattice’ (or ‘chiral’) symmetry (S). The labels T, C and S represent
the presence/absence of time-reversal, particle–hole and chiral symmetries,
respectively, as well as the types of these symmetries. The column entitled
‘Hamiltonian’ lists, for each of the ten symmetry classes, the symmetric space of
which the quantum mechanical time-evolution operator exp(itH) is an element.
The column ‘Cartan label’ is the name given to the corresponding symmetric
space listed in the column ‘Hamiltonian’ in Élie Cartan’s classification scheme
(dating back to the year 1926). The last column entitled ‘G/H (ferm. NL�M)’
lists the (compact sectors of the) target space of the NL�M describing Anderson
localization physics at long wavelength in this given symmetry class.
Cartan label T C S Hamiltonian G/H (ferm. NL�M)

A (unitary) 0 0 0 U(N ) U(2n)/U(n) ⇥ U(n)

AI (orthogonal) +1 0 0 U(N )/O(N ) Sp(2n)/Sp(n) ⇥ Sp(n)

AII (symplectic) �1 0 0 U(2N )/Sp(2N ) O(2n)/O(n) ⇥ O(n)

AIII (ch. unit.) 0 0 1 U(N + M)/U(N ) ⇥ U(M) U(n)

BDI (ch. orth.) +1 +1 1 O(N + M)/O(N ) ⇥ O(M) U(2n)/Sp(2n)

CII (ch. sympl.) �1 �1 1 Sp(N + M)/Sp(N ) ⇥ Sp(M) U(2n)/O(2n)

D (BdG) 0 +1 0 SO(2N ) O(2n)/U(n)

C (BdG) 0 �1 0 Sp(2N ) Sp(2n)/U(n)

DIII (BdG) �1 +1 1 SO(2N )/U(N ) O(2n)

CI (BdG) +1 �1 1 Sp(2N )/U(N ) Sp(2n)

The only case when the behavior under the combined transformation S = T · C is not determined
by the behavior under T and C is the case where T = 0 and C = 0. In this case, either S = 0
or S = 1 is possible. This then yields (3 ⇥ 3 � 1) + 2 = 10 possible types of behavior of the
Hamiltonian.

The list of ten possible types of behavior of the first quantized Hamiltonian under T , C
and S is given in table 1. These are the ten generic symmetry classes (the ‘tenfold way’),
which are the framework within which the classification scheme of topological insulators
(superconductors) is formulated.

Let us first point out a very general structure seen in table 1. This is listed in the column
entitled ‘Hamiltonian’. When the first quantized Hamiltonian H is ‘regularized’ (or ‘put on’)
a finite lattice, it becomes an N ⇥ N matrix (as discussed above). The entries in the column
‘Hamiltonian’ specify the type of N ⇥ N matrix that the quantum mechanical time-evolution
operator exp(itH) is. For example, for systems that have no time-reversal or charge-conjugation
symmetry properties at all, i.e. for which T = 0, C = 0, S = 0, which are listed in the first row
of the table, there are no constraints on the Hamiltonian except for Hermiticity. Thus, H is a
generic Hermitian matrix and the time-evolution operator is a generic unitary matrix, so that
exp(itH) is an element of the unitary group U(N ) of unitary N ⇥ N matrices. By imposing
time-reversal symmetry (for a system that has, e.g., no other degree of freedom such as, e.g.,
spin), there exists a basis in which H is represented by a real symmetric N ⇥ N matrix. This,
in turn, can be expressed as saying that the time-evolution operator is an element of the coset

New Journal of Physics 12 (2010) 065010 (http://www.njp.org/)

UTU
⇤
T = �1

UCU
⇤
C = 1
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Example: class DIII 21

7

Table 1. Listed are the ten generic symmetry classes of single-particle
Hamiltonians H, classified according to their behavior under time-reversal
symmetry (T ), charge-conjugation (or particle–hole) symmetry (C), as well
as ‘sublattice’ (or ‘chiral’) symmetry (S). The labels T, C and S represent
the presence/absence of time-reversal, particle–hole and chiral symmetries,
respectively, as well as the types of these symmetries. The column entitled
‘Hamiltonian’ lists, for each of the ten symmetry classes, the symmetric space of
which the quantum mechanical time-evolution operator exp(itH) is an element.
The column ‘Cartan label’ is the name given to the corresponding symmetric
space listed in the column ‘Hamiltonian’ in Élie Cartan’s classification scheme
(dating back to the year 1926). The last column entitled ‘G/H (ferm. NL�M)’
lists the (compact sectors of the) target space of the NL�M describing Anderson
localization physics at long wavelength in this given symmetry class.
Cartan label T C S Hamiltonian G/H (ferm. NL�M)

A (unitary) 0 0 0 U(N ) U(2n)/U(n) ⇥ U(n)

AI (orthogonal) +1 0 0 U(N )/O(N ) Sp(2n)/Sp(n) ⇥ Sp(n)

AII (symplectic) �1 0 0 U(2N )/Sp(2N ) O(2n)/O(n) ⇥ O(n)

AIII (ch. unit.) 0 0 1 U(N + M)/U(N ) ⇥ U(M) U(n)

BDI (ch. orth.) +1 +1 1 O(N + M)/O(N ) ⇥ O(M) U(2n)/Sp(2n)

CII (ch. sympl.) �1 �1 1 Sp(N + M)/Sp(N ) ⇥ Sp(M) U(2n)/O(2n)

D (BdG) 0 +1 0 SO(2N ) O(2n)/U(n)

C (BdG) 0 �1 0 Sp(2N ) Sp(2n)/U(n)

DIII (BdG) �1 +1 1 SO(2N )/U(N ) O(2n)

CI (BdG) +1 �1 1 Sp(2N )/U(N ) Sp(2n)

The only case when the behavior under the combined transformation S = T · C is not determined
by the behavior under T and C is the case where T = 0 and C = 0. In this case, either S = 0
or S = 1 is possible. This then yields (3 ⇥ 3 � 1) + 2 = 10 possible types of behavior of the
Hamiltonian.

The list of ten possible types of behavior of the first quantized Hamiltonian under T , C
and S is given in table 1. These are the ten generic symmetry classes (the ‘tenfold way’),
which are the framework within which the classification scheme of topological insulators
(superconductors) is formulated.

Let us first point out a very general structure seen in table 1. This is listed in the column
entitled ‘Hamiltonian’. When the first quantized Hamiltonian H is ‘regularized’ (or ‘put on’)
a finite lattice, it becomes an N ⇥ N matrix (as discussed above). The entries in the column
‘Hamiltonian’ specify the type of N ⇥ N matrix that the quantum mechanical time-evolution
operator exp(itH) is. For example, for systems that have no time-reversal or charge-conjugation
symmetry properties at all, i.e. for which T = 0, C = 0, S = 0, which are listed in the first row
of the table, there are no constraints on the Hamiltonian except for Hermiticity. Thus, H is a
generic Hermitian matrix and the time-evolution operator is a generic unitary matrix, so that
exp(itH) is an element of the unitary group U(N ) of unitary N ⇥ N matrices. By imposing
time-reversal symmetry (for a system that has, e.g., no other degree of freedom such as, e.g.,
spin), there exists a basis in which H is represented by a real symmetric N ⇥ N matrix. This,
in turn, can be expressed as saying that the time-evolution operator is an element of the coset
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Table 1. Listed are the ten generic symmetry classes of single-particle
Hamiltonians H, classified according to their behavior under time-reversal
symmetry (T ), charge-conjugation (or particle–hole) symmetry (C), as well
as ‘sublattice’ (or ‘chiral’) symmetry (S). The labels T, C and S represent
the presence/absence of time-reversal, particle–hole and chiral symmetries,
respectively, as well as the types of these symmetries. The column entitled
‘Hamiltonian’ lists, for each of the ten symmetry classes, the symmetric space of
which the quantum mechanical time-evolution operator exp(itH) is an element.
The column ‘Cartan label’ is the name given to the corresponding symmetric
space listed in the column ‘Hamiltonian’ in Élie Cartan’s classification scheme
(dating back to the year 1926). The last column entitled ‘G/H (ferm. NL�M)’
lists the (compact sectors of the) target space of the NL�M describing Anderson
localization physics at long wavelength in this given symmetry class.
Cartan label T C S Hamiltonian G/H (ferm. NL�M)

A (unitary) 0 0 0 U(N ) U(2n)/U(n) ⇥ U(n)

AI (orthogonal) +1 0 0 U(N )/O(N ) Sp(2n)/Sp(n) ⇥ Sp(n)

AII (symplectic) �1 0 0 U(2N )/Sp(2N ) O(2n)/O(n) ⇥ O(n)

AIII (ch. unit.) 0 0 1 U(N + M)/U(N ) ⇥ U(M) U(n)

BDI (ch. orth.) +1 +1 1 O(N + M)/O(N ) ⇥ O(M) U(2n)/Sp(2n)

CII (ch. sympl.) �1 �1 1 Sp(N + M)/Sp(N ) ⇥ Sp(M) U(2n)/O(2n)

D (BdG) 0 +1 0 SO(2N ) O(2n)/U(n)

C (BdG) 0 �1 0 Sp(2N ) Sp(2n)/U(n)

DIII (BdG) �1 +1 1 SO(2N )/U(N ) O(2n)

CI (BdG) +1 �1 1 Sp(2N )/U(N ) Sp(2n)

The only case when the behavior under the combined transformation S = T · C is not determined
by the behavior under T and C is the case where T = 0 and C = 0. In this case, either S = 0
or S = 1 is possible. This then yields (3 ⇥ 3 � 1) + 2 = 10 possible types of behavior of the
Hamiltonian.

The list of ten possible types of behavior of the first quantized Hamiltonian under T , C
and S is given in table 1. These are the ten generic symmetry classes (the ‘tenfold way’),
which are the framework within which the classification scheme of topological insulators
(superconductors) is formulated.

Let us first point out a very general structure seen in table 1. This is listed in the column
entitled ‘Hamiltonian’. When the first quantized Hamiltonian H is ‘regularized’ (or ‘put on’)
a finite lattice, it becomes an N ⇥ N matrix (as discussed above). The entries in the column
‘Hamiltonian’ specify the type of N ⇥ N matrix that the quantum mechanical time-evolution
operator exp(itH) is. For example, for systems that have no time-reversal or charge-conjugation
symmetry properties at all, i.e. for which T = 0, C = 0, S = 0, which are listed in the first row
of the table, there are no constraints on the Hamiltonian except for Hermiticity. Thus, H is a
generic Hermitian matrix and the time-evolution operator is a generic unitary matrix, so that
exp(itH) is an element of the unitary group U(N ) of unitary N ⇥ N matrices. By imposing
time-reversal symmetry (for a system that has, e.g., no other degree of freedom such as, e.g.,
spin), there exists a basis in which H is represented by a real symmetric N ⇥ N matrix. This,
in turn, can be expressed as saying that the time-evolution operator is an element of the coset
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Table 1. Listed are the ten generic symmetry classes of single-particle
Hamiltonians H, classified according to their behavior under time-reversal
symmetry (T ), charge-conjugation (or particle–hole) symmetry (C), as well
as ‘sublattice’ (or ‘chiral’) symmetry (S). The labels T, C and S represent
the presence/absence of time-reversal, particle–hole and chiral symmetries,
respectively, as well as the types of these symmetries. The column entitled
‘Hamiltonian’ lists, for each of the ten symmetry classes, the symmetric space of
which the quantum mechanical time-evolution operator exp(itH) is an element.
The column ‘Cartan label’ is the name given to the corresponding symmetric
space listed in the column ‘Hamiltonian’ in Élie Cartan’s classification scheme
(dating back to the year 1926). The last column entitled ‘G/H (ferm. NL�M)’
lists the (compact sectors of the) target space of the NL�M describing Anderson
localization physics at long wavelength in this given symmetry class.
Cartan label T C S Hamiltonian G/H (ferm. NL�M)

A (unitary) 0 0 0 U(N ) U(2n)/U(n) ⇥ U(n)

AI (orthogonal) +1 0 0 U(N )/O(N ) Sp(2n)/Sp(n) ⇥ Sp(n)

AII (symplectic) �1 0 0 U(2N )/Sp(2N ) O(2n)/O(n) ⇥ O(n)

AIII (ch. unit.) 0 0 1 U(N + M)/U(N ) ⇥ U(M) U(n)

BDI (ch. orth.) +1 +1 1 O(N + M)/O(N ) ⇥ O(M) U(2n)/Sp(2n)

CII (ch. sympl.) �1 �1 1 Sp(N + M)/Sp(N ) ⇥ Sp(M) U(2n)/O(2n)

D (BdG) 0 +1 0 SO(2N ) O(2n)/U(n)

C (BdG) 0 �1 0 Sp(2N ) Sp(2n)/U(n)

DIII (BdG) �1 +1 1 SO(2N )/U(N ) O(2n)

CI (BdG) +1 �1 1 Sp(2N )/U(N ) Sp(2n)

The only case when the behavior under the combined transformation S = T · C is not determined
by the behavior under T and C is the case where T = 0 and C = 0. In this case, either S = 0
or S = 1 is possible. This then yields (3 ⇥ 3 � 1) + 2 = 10 possible types of behavior of the
Hamiltonian.

The list of ten possible types of behavior of the first quantized Hamiltonian under T , C
and S is given in table 1. These are the ten generic symmetry classes (the ‘tenfold way’),
which are the framework within which the classification scheme of topological insulators
(superconductors) is formulated.

Let us first point out a very general structure seen in table 1. This is listed in the column
entitled ‘Hamiltonian’. When the first quantized Hamiltonian H is ‘regularized’ (or ‘put on’)
a finite lattice, it becomes an N ⇥ N matrix (as discussed above). The entries in the column
‘Hamiltonian’ specify the type of N ⇥ N matrix that the quantum mechanical time-evolution
operator exp(itH) is. For example, for systems that have no time-reversal or charge-conjugation
symmetry properties at all, i.e. for which T = 0, C = 0, S = 0, which are listed in the first row
of the table, there are no constraints on the Hamiltonian except for Hermiticity. Thus, H is a
generic Hermitian matrix and the time-evolution operator is a generic unitary matrix, so that
exp(itH) is an element of the unitary group U(N ) of unitary N ⇥ N matrices. By imposing
time-reversal symmetry (for a system that has, e.g., no other degree of freedom such as, e.g.,
spin), there exists a basis in which H is represented by a real symmetric N ⇥ N matrix. This,
in turn, can be expressed as saying that the time-evolution operator is an element of the coset
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Table 1. Listed are the ten generic symmetry classes of single-particle
Hamiltonians H, classified according to their behavior under time-reversal
symmetry (T ), charge-conjugation (or particle–hole) symmetry (C), as well
as ‘sublattice’ (or ‘chiral’) symmetry (S). The labels T, C and S represent
the presence/absence of time-reversal, particle–hole and chiral symmetries,
respectively, as well as the types of these symmetries. The column entitled
‘Hamiltonian’ lists, for each of the ten symmetry classes, the symmetric space of
which the quantum mechanical time-evolution operator exp(itH) is an element.
The column ‘Cartan label’ is the name given to the corresponding symmetric
space listed in the column ‘Hamiltonian’ in Élie Cartan’s classification scheme
(dating back to the year 1926). The last column entitled ‘G/H (ferm. NL�M)’
lists the (compact sectors of the) target space of the NL�M describing Anderson
localization physics at long wavelength in this given symmetry class.
Cartan label T C S Hamiltonian G/H (ferm. NL�M)

A (unitary) 0 0 0 U(N ) U(2n)/U(n) ⇥ U(n)

AI (orthogonal) +1 0 0 U(N )/O(N ) Sp(2n)/Sp(n) ⇥ Sp(n)

AII (symplectic) �1 0 0 U(2N )/Sp(2N ) O(2n)/O(n) ⇥ O(n)

AIII (ch. unit.) 0 0 1 U(N + M)/U(N ) ⇥ U(M) U(n)

BDI (ch. orth.) +1 +1 1 O(N + M)/O(N ) ⇥ O(M) U(2n)/Sp(2n)

CII (ch. sympl.) �1 �1 1 Sp(N + M)/Sp(N ) ⇥ Sp(M) U(2n)/O(2n)

D (BdG) 0 +1 0 SO(2N ) O(2n)/U(n)

C (BdG) 0 �1 0 Sp(2N ) Sp(2n)/U(n)

DIII (BdG) �1 +1 1 SO(2N )/U(N ) O(2n)

CI (BdG) +1 �1 1 Sp(2N )/U(N ) Sp(2n)

The only case when the behavior under the combined transformation S = T · C is not determined
by the behavior under T and C is the case where T = 0 and C = 0. In this case, either S = 0
or S = 1 is possible. This then yields (3 ⇥ 3 � 1) + 2 = 10 possible types of behavior of the
Hamiltonian.

The list of ten possible types of behavior of the first quantized Hamiltonian under T , C
and S is given in table 1. These are the ten generic symmetry classes (the ‘tenfold way’),
which are the framework within which the classification scheme of topological insulators
(superconductors) is formulated.

Let us first point out a very general structure seen in table 1. This is listed in the column
entitled ‘Hamiltonian’. When the first quantized Hamiltonian H is ‘regularized’ (or ‘put on’)
a finite lattice, it becomes an N ⇥ N matrix (as discussed above). The entries in the column
‘Hamiltonian’ specify the type of N ⇥ N matrix that the quantum mechanical time-evolution
operator exp(itH) is. For example, for systems that have no time-reversal or charge-conjugation
symmetry properties at all, i.e. for which T = 0, C = 0, S = 0, which are listed in the first row
of the table, there are no constraints on the Hamiltonian except for Hermiticity. Thus, H is a
generic Hermitian matrix and the time-evolution operator is a generic unitary matrix, so that
exp(itH) is an element of the unitary group U(N ) of unitary N ⇥ N matrices. By imposing
time-reversal symmetry (for a system that has, e.g., no other degree of freedom such as, e.g.,
spin), there exists a basis in which H is represented by a real symmetric N ⇥ N matrix. This,
in turn, can be expressed as saying that the time-evolution operator is an element of the coset
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UTU
⇤
T = 1

UCU
⇤
C = �1

Spin-singlet time-reversal invariant 
superconductor

This is a conventional s-wave spin-singlet superconductor.

Can be topological in 3D

Conventional superconductors are not topological,
but an example of a 3D CI topological superconductor is 
known (Ludwig et al)
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Table 3. Classification of topological insulators and superconductors as a
function of spatial dimension d and symmetry class, indicated by the ‘Cartan
label’ (first column). The definition of the ten generic symmetry classes of single
particle Hamiltonians (due to Altland and Zirnbauer [29, 30]) is given in table 1.
The symmetry classes are grouped into two separate lists, the complex and
real cases, depending on whether the Hamiltonian is complex or whether one
(or more) reality conditions (arising from time-reversal or charge-conjugation
symmetries) are imposed on it; the symmetry classes are ordered in such a way
that a periodic pattern in dimensionality becomes visible [27]. (See also the
discussion in subsection 1.1 and table 2.) The symbols Z and Z2 indicate that
the topologically distinct phases within a given symmetry class of topological
insulators (superconductors) are characterized by an integer invariant (Z) or a
Z2 quantity, respectively. The symbol ‘0’ denotes the case when there exists no
topological insulator (superconductor), i.e. when all quantum ground states are
topologically equivalent to the trivial state.

d
Cartan 0 1 2 3 4 5 6 7 8 9 10 11 . . .

Complex case:
A Z 0 Z 0 Z 0 Z 0 Z 0 Z 0 . . .
AIII 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z . . .

Real case:
AI Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 . . .
BDI Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 . . .
D Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 . . .
DIII 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z . . .
AII 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 . . .
CII 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 . . .
C 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 . . .
CI 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z . . .

dimensions if and only if the target space of the NL�M on the d̄-dimensional boundary allows
for either (i) a Z2 topological term, which is the case when ⇡d̄(G/H) = ⇡d�1(G/H) = Z2, or
(ii) a WZW term, which is the case when ⇡d(G/H) = ⇡d̄+1(G/H) = Z. By using this rule in
conjunction with table 2 of homotopy groups, we arrive with the help of table 1 at table 3 of
topological insulators and superconductors24.

A look at table 3 reveals that in each spatial dimension there exist five distinct classes of
topological insulators (superconductors), three of which are characterized by an integral (Z)
topological number, while the remaining two possess a binary (Z2) topological quantity25.

24 To be explicit, one has to move all the entries Z in table 2 into the locations indicated by the arrows, and replace
the column label d̄ by d = d̄ + 1. The result is table 3.
25 Note that while d = 0, 1, 2, 3-dimensional systems are of direct physical relevance, higher-dimensional
topological states might be of interest indirectly, because, for example, some of the additional components of
momentum in a higher-dimensional space may be interpreted as adiabatic parameters (external parameters on
which the Hamiltonian depends and which can be changed adiabatically, traversing closed paths in parameter
space—sometimes referred to as adiabatic ‘pumping processes’).

New Journal of Physics 12 (2010) 065010 (http://www.njp.org/)

space dimensionality

symmetry
classes Kitaev, 2009;

Ludwig, Ryu, Schnyder, Furusaki, 2009.

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010
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Grey - chiral
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Table 3. Classification of topological insulators and superconductors as a
function of spatial dimension d and symmetry class, indicated by the ‘Cartan
label’ (first column). The definition of the ten generic symmetry classes of single
particle Hamiltonians (due to Altland and Zirnbauer [29, 30]) is given in table 1.
The symmetry classes are grouped into two separate lists, the complex and
real cases, depending on whether the Hamiltonian is complex or whether one
(or more) reality conditions (arising from time-reversal or charge-conjugation
symmetries) are imposed on it; the symmetry classes are ordered in such a way
that a periodic pattern in dimensionality becomes visible [27]. (See also the
discussion in subsection 1.1 and table 2.) The symbols Z and Z2 indicate that
the topologically distinct phases within a given symmetry class of topological
insulators (superconductors) are characterized by an integer invariant (Z) or a
Z2 quantity, respectively. The symbol ‘0’ denotes the case when there exists no
topological insulator (superconductor), i.e. when all quantum ground states are
topologically equivalent to the trivial state.

d
Cartan 0 1 2 3 4 5 6 7 8 9 10 11 . . .

Complex case:
A Z 0 Z 0 Z 0 Z 0 Z 0 Z 0 . . .
AIII 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z . . .

Real case:
AI Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 . . .
BDI Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 . . .
D Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 . . .
DIII 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z . . .
AII 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 . . .
CII 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 . . .
C 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 . . .
CI 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z . . .

dimensions if and only if the target space of the NL�M on the d̄-dimensional boundary allows
for either (i) a Z2 topological term, which is the case when ⇡d̄(G/H) = ⇡d�1(G/H) = Z2, or
(ii) a WZW term, which is the case when ⇡d(G/H) = ⇡d̄+1(G/H) = Z. By using this rule in
conjunction with table 2 of homotopy groups, we arrive with the help of table 1 at table 3 of
topological insulators and superconductors24.

A look at table 3 reveals that in each spatial dimension there exist five distinct classes of
topological insulators (superconductors), three of which are characterized by an integral (Z)
topological number, while the remaining two possess a binary (Z2) topological quantity25.

24 To be explicit, one has to move all the entries Z in table 2 into the locations indicated by the arrows, and replace
the column label d̄ by d = d̄ + 1. The result is table 3.
25 Note that while d = 0, 1, 2, 3-dimensional systems are of direct physical relevance, higher-dimensional
topological states might be of interest indirectly, because, for example, some of the additional components of
momentum in a higher-dimensional space may be interpreted as adiabatic parameters (external parameters on
which the Hamiltonian depends and which can be changed adiabatically, traversing closed paths in parameter
space—sometimes referred to as adiabatic ‘pumping processes’).

New Journal of Physics 12 (2010) 065010 (http://www.njp.org/)
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Full classification table 24
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Table 3. Classification of topological insulators and superconductors as a
function of spatial dimension d and symmetry class, indicated by the ‘Cartan
label’ (first column). The definition of the ten generic symmetry classes of single
particle Hamiltonians (due to Altland and Zirnbauer [29, 30]) is given in table 1.
The symmetry classes are grouped into two separate lists, the complex and
real cases, depending on whether the Hamiltonian is complex or whether one
(or more) reality conditions (arising from time-reversal or charge-conjugation
symmetries) are imposed on it; the symmetry classes are ordered in such a way
that a periodic pattern in dimensionality becomes visible [27]. (See also the
discussion in subsection 1.1 and table 2.) The symbols Z and Z2 indicate that
the topologically distinct phases within a given symmetry class of topological
insulators (superconductors) are characterized by an integer invariant (Z) or a
Z2 quantity, respectively. The symbol ‘0’ denotes the case when there exists no
topological insulator (superconductor), i.e. when all quantum ground states are
topologically equivalent to the trivial state.

d
Cartan 0 1 2 3 4 5 6 7 8 9 10 11 . . .

Complex case:
A Z 0 Z 0 Z 0 Z 0 Z 0 Z 0 . . .
AIII 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z . . .

Real case:
AI Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 . . .
BDI Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 . . .
D Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 . . .
DIII 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z . . .
AII 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 . . .
CII 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 . . .
C 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 . . .
CI 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z . . .

dimensions if and only if the target space of the NL�M on the d̄-dimensional boundary allows
for either (i) a Z2 topological term, which is the case when ⇡d̄(G/H) = ⇡d�1(G/H) = Z2, or
(ii) a WZW term, which is the case when ⇡d(G/H) = ⇡d̄+1(G/H) = Z. By using this rule in
conjunction with table 2 of homotopy groups, we arrive with the help of table 1 at table 3 of
topological insulators and superconductors24.

A look at table 3 reveals that in each spatial dimension there exist five distinct classes of
topological insulators (superconductors), three of which are characterized by an integral (Z)
topological number, while the remaining two possess a binary (Z2) topological quantity25.

24 To be explicit, one has to move all the entries Z in table 2 into the locations indicated by the arrows, and replace
the column label d̄ by d = d̄ + 1. The result is table 3.
25 Note that while d = 0, 1, 2, 3-dimensional systems are of direct physical relevance, higher-dimensional
topological states might be of interest indirectly, because, for example, some of the additional components of
momentum in a higher-dimensional space may be interpreted as adiabatic parameters (external parameters on
which the Hamiltonian depends and which can be changed adiabatically, traversing closed paths in parameter
space—sometimes referred to as adiabatic ‘pumping processes’).
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Table 3. Classification of topological insulators and superconductors as a
function of spatial dimension d and symmetry class, indicated by the ‘Cartan
label’ (first column). The definition of the ten generic symmetry classes of single
particle Hamiltonians (due to Altland and Zirnbauer [29, 30]) is given in table 1.
The symmetry classes are grouped into two separate lists, the complex and
real cases, depending on whether the Hamiltonian is complex or whether one
(or more) reality conditions (arising from time-reversal or charge-conjugation
symmetries) are imposed on it; the symmetry classes are ordered in such a way
that a periodic pattern in dimensionality becomes visible [27]. (See also the
discussion in subsection 1.1 and table 2.) The symbols Z and Z2 indicate that
the topologically distinct phases within a given symmetry class of topological
insulators (superconductors) are characterized by an integer invariant (Z) or a
Z2 quantity, respectively. The symbol ‘0’ denotes the case when there exists no
topological insulator (superconductor), i.e. when all quantum ground states are
topologically equivalent to the trivial state.

d
Cartan 0 1 2 3 4 5 6 7 8 9 10 11 . . .

Complex case:
A Z 0 Z 0 Z 0 Z 0 Z 0 Z 0 . . .
AIII 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z . . .

Real case:
AI Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 . . .
BDI Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 . . .
D Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 . . .
DIII 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z . . .
AII 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 . . .
CII 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 . . .
C 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 . . .
CI 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z . . .

dimensions if and only if the target space of the NL�M on the d̄-dimensional boundary allows
for either (i) a Z2 topological term, which is the case when ⇡d̄(G/H) = ⇡d�1(G/H) = Z2, or
(ii) a WZW term, which is the case when ⇡d(G/H) = ⇡d̄+1(G/H) = Z. By using this rule in
conjunction with table 2 of homotopy groups, we arrive with the help of table 1 at table 3 of
topological insulators and superconductors24.

A look at table 3 reveals that in each spatial dimension there exist five distinct classes of
topological insulators (superconductors), three of which are characterized by an integral (Z)
topological number, while the remaining two possess a binary (Z2) topological quantity25.

24 To be explicit, one has to move all the entries Z in table 2 into the locations indicated by the arrows, and replace
the column label d̄ by d = d̄ + 1. The result is table 3.
25 Note that while d = 0, 1, 2, 3-dimensional systems are of direct physical relevance, higher-dimensional
topological states might be of interest indirectly, because, for example, some of the additional components of
momentum in a higher-dimensional space may be interpreted as adiabatic parameters (external parameters on
which the Hamiltonian depends and which can be changed adiabatically, traversing closed paths in parameter
space—sometimes referred to as adiabatic ‘pumping processes’).
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Table 3. Classification of topological insulators and superconductors as a
function of spatial dimension d and symmetry class, indicated by the ‘Cartan
label’ (first column). The definition of the ten generic symmetry classes of single
particle Hamiltonians (due to Altland and Zirnbauer [29, 30]) is given in table 1.
The symmetry classes are grouped into two separate lists, the complex and
real cases, depending on whether the Hamiltonian is complex or whether one
(or more) reality conditions (arising from time-reversal or charge-conjugation
symmetries) are imposed on it; the symmetry classes are ordered in such a way
that a periodic pattern in dimensionality becomes visible [27]. (See also the
discussion in subsection 1.1 and table 2.) The symbols Z and Z2 indicate that
the topologically distinct phases within a given symmetry class of topological
insulators (superconductors) are characterized by an integer invariant (Z) or a
Z2 quantity, respectively. The symbol ‘0’ denotes the case when there exists no
topological insulator (superconductor), i.e. when all quantum ground states are
topologically equivalent to the trivial state.
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dimensions if and only if the target space of the NL�M on the d̄-dimensional boundary allows
for either (i) a Z2 topological term, which is the case when ⇡d̄(G/H) = ⇡d�1(G/H) = Z2, or
(ii) a WZW term, which is the case when ⇡d(G/H) = ⇡d̄+1(G/H) = Z. By using this rule in
conjunction with table 2 of homotopy groups, we arrive with the help of table 1 at table 3 of
topological insulators and superconductors24.

A look at table 3 reveals that in each spatial dimension there exist five distinct classes of
topological insulators (superconductors), three of which are characterized by an integral (Z)
topological number, while the remaining two possess a binary (Z2) topological quantity25.

24 To be explicit, one has to move all the entries Z in table 2 into the locations indicated by the arrows, and replace
the column label d̄ by d = d̄ + 1. The result is table 3.
25 Note that while d = 0, 1, 2, 3-dimensional systems are of direct physical relevance, higher-dimensional
topological states might be of interest indirectly, because, for example, some of the additional components of
momentum in a higher-dimensional space may be interpreted as adiabatic parameters (external parameters on
which the Hamiltonian depends and which can be changed adiabatically, traversing closed paths in parameter
space—sometimes referred to as adiabatic ‘pumping processes’).
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Table 3. Classification of topological insulators and superconductors as a
function of spatial dimension d and symmetry class, indicated by the ‘Cartan
label’ (first column). The definition of the ten generic symmetry classes of single
particle Hamiltonians (due to Altland and Zirnbauer [29, 30]) is given in table 1.
The symmetry classes are grouped into two separate lists, the complex and
real cases, depending on whether the Hamiltonian is complex or whether one
(or more) reality conditions (arising from time-reversal or charge-conjugation
symmetries) are imposed on it; the symmetry classes are ordered in such a way
that a periodic pattern in dimensionality becomes visible [27]. (See also the
discussion in subsection 1.1 and table 2.) The symbols Z and Z2 indicate that
the topologically distinct phases within a given symmetry class of topological
insulators (superconductors) are characterized by an integer invariant (Z) or a
Z2 quantity, respectively. The symbol ‘0’ denotes the case when there exists no
topological insulator (superconductor), i.e. when all quantum ground states are
topologically equivalent to the trivial state.
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Complex case:
A Z 0 Z 0 Z 0 Z 0 Z 0 Z 0 . . .
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Real case:
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C 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 . . .
CI 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z . . .

dimensions if and only if the target space of the NL�M on the d̄-dimensional boundary allows
for either (i) a Z2 topological term, which is the case when ⇡d̄(G/H) = ⇡d�1(G/H) = Z2, or
(ii) a WZW term, which is the case when ⇡d(G/H) = ⇡d̄+1(G/H) = Z. By using this rule in
conjunction with table 2 of homotopy groups, we arrive with the help of table 1 at table 3 of
topological insulators and superconductors24.

A look at table 3 reveals that in each spatial dimension there exist five distinct classes of
topological insulators (superconductors), three of which are characterized by an integral (Z)
topological number, while the remaining two possess a binary (Z2) topological quantity25.

24 To be explicit, one has to move all the entries Z in table 2 into the locations indicated by the arrows, and replace
the column label d̄ by d = d̄ + 1. The result is table 3.
25 Note that while d = 0, 1, 2, 3-dimensional systems are of direct physical relevance, higher-dimensional
topological states might be of interest indirectly, because, for example, some of the additional components of
momentum in a higher-dimensional space may be interpreted as adiabatic parameters (external parameters on
which the Hamiltonian depends and which can be changed adiabatically, traversing closed paths in parameter
space—sometimes referred to as adiabatic ‘pumping processes’).
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New crucial feature - Z2 invariant 25

Take class AII: time reversal invariance with spin-1/2 (with spin-orbit coupling)

In 4D it can be topological

Its 3D boundary has gapless excitations. These generally form a Fermi spheres.

U †
TG

T (!,�k)UT = G(!,k)

p
x

pyq

3D boundary of a 4D insulator

TR invariance
relates p,q and -p,-q

Fermi surfaces at the edge

Declare q “unphysical” and reduce 
dimensions to 3D insulator with

2D boundary

Gphys(!, px, py) = G(!, p
x

, p
y

, q)|
q=0

If the number of Fermi spheres was
odd, the physical 3D insulator has

gapless excitations.
Otherwise, it does not.

Z2
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Full classification table 26
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Table 3. Classification of topological insulators and superconductors as a
function of spatial dimension d and symmetry class, indicated by the ‘Cartan
label’ (first column). The definition of the ten generic symmetry classes of single
particle Hamiltonians (due to Altland and Zirnbauer [29, 30]) is given in table 1.
The symmetry classes are grouped into two separate lists, the complex and
real cases, depending on whether the Hamiltonian is complex or whether one
(or more) reality conditions (arising from time-reversal or charge-conjugation
symmetries) are imposed on it; the symmetry classes are ordered in such a way
that a periodic pattern in dimensionality becomes visible [27]. (See also the
discussion in subsection 1.1 and table 2.) The symbols Z and Z2 indicate that
the topologically distinct phases within a given symmetry class of topological
insulators (superconductors) are characterized by an integer invariant (Z) or a
Z2 quantity, respectively. The symbol ‘0’ denotes the case when there exists no
topological insulator (superconductor), i.e. when all quantum ground states are
topologically equivalent to the trivial state.

d
Cartan 0 1 2 3 4 5 6 7 8 9 10 11 . . .

Complex case:
A Z 0 Z 0 Z 0 Z 0 Z 0 Z 0 . . .
AIII 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z . . .

Real case:
AI Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 . . .
BDI Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 . . .
D Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 . . .
DIII 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z . . .
AII 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 . . .
CII 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 . . .
C 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 . . .
CI 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z . . .

dimensions if and only if the target space of the NL�M on the d̄-dimensional boundary allows
for either (i) a Z2 topological term, which is the case when ⇡d̄(G/H) = ⇡d�1(G/H) = Z2, or
(ii) a WZW term, which is the case when ⇡d(G/H) = ⇡d̄+1(G/H) = Z. By using this rule in
conjunction with table 2 of homotopy groups, we arrive with the help of table 1 at table 3 of
topological insulators and superconductors24.

A look at table 3 reveals that in each spatial dimension there exist five distinct classes of
topological insulators (superconductors), three of which are characterized by an integral (Z)
topological number, while the remaining two possess a binary (Z2) topological quantity25.

24 To be explicit, one has to move all the entries Z in table 2 into the locations indicated by the arrows, and replace
the column label d̄ by d = d̄ + 1. The result is table 3.
25 Note that while d = 0, 1, 2, 3-dimensional systems are of direct physical relevance, higher-dimensional
topological states might be of interest indirectly, because, for example, some of the additional components of
momentum in a higher-dimensional space may be interpreted as adiabatic parameters (external parameters on
which the Hamiltonian depends and which can be changed adiabatically, traversing closed paths in parameter
space—sometimes referred to as adiabatic ‘pumping processes’).
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Edge excitations 27

Take nonchiral insulator in d-dimensions (d even)
It has a d-1 dimensional edge with gapless excitations

Here α go over !, k1, . . . , kd�1

n↵0 = �
�
d
2 � 1

�
!

(2⇡i)
d
2 (d� 1)!

X

↵1...↵d�1

✏↵0↵1...↵d�1

Z
d!dd�2k tr

⇥
G�1@↵1GG�1@↵2G . . .G�1@↵d�1G

⇤

X

↵

@↵n↵ = 0 except where G is singular or where there are zero-energy excitations

Nd =

I
ds↵n↵

this integral must be equal to the bulk topological invariant of the insulator

similarly for d odd and chiral insulators
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Example: quantum hall edge 28

B
n↵0 =

1

2⇡i

X

↵1

✏↵0↵1 tr
⇥
G�1@↵1G

⇤

k
k

!

I
ds↵n↵ = N0(⇤)�N0(�⇤)

N0(k) = tr

Z
d!

2⇡i
G�1@!G =

X

n

Z
d!

2⇡i
@! ln

✓
1

i! � ✏n(k)

◆
=

1

2

X

n

sign ✏n(k)

⇤�⇤

�⇤
⇤ k

chiral edge state

✏n
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Example: an edge of a 3D DIII insulator 29

This is 3He  

H = �xk
x

+ �yk
y

�
x

H⇤(�k)�
x

= �H(k) p.h.
�yH⇤(�k)�y = H(k) t.r.

Z X

↵=x,y

ds↵ n
↵

= 1.

�zH(k)�z = H(k) chiral
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Example: an edge of a 3D DIII insulator 29

This is 3He  

H = �xk
x

+ �yk
y
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x

H⇤(�k)�
x

= �H(k) p.h.
�yH⇤(�k)�y = H(k) t.r.
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↵
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H =

✓
0 k

x

� ik
y

k
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+ ik
y

0

◆ Z
ds↵n

↵

=
1

2⇡i

I
dkµ@

kµ ln (k
x

� ik
y

)

V = k
x

� ik
y
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Edge theory of AII 3D topological insulators 30

Literature states that its 2D 
edge is a Dirac fermion theory

because it is
1. linear in momenta
2. time-reversal invariant
H(p) = �yH

⇤(�p)�y

But does it have the right edge invariant?

H = v (�
x

p
x

+ �
y

p
y

)� µ
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Edge theory of AII 3D topological insulators 30

Literature states that its 2D 
edge is a Dirac fermion theory

because it is
1. linear in momenta
2. time-reversal invariant
H(p) = �yH

⇤(�p)�y

But does it have the right edge invariant?

H = v (�
x

p
x

+ �
y

p
y

)� µ

H = v (�
x

p
x

+ �
y

p
y

+ �
z

q)� µ
Enlarge dimensions to 4D (3D edge)
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Edge theory of AII 3D topological insulators 30

Literature states that its 2D 
edge is a Dirac fermion theory

because it is
1. linear in momenta
2. time-reversal invariant
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Enlarge dimensions to 4D (3D edge)

Yes, it does have the 
right edge invariant.
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Disorder 31

Old idea of Thouless, Wu, Niu: impose phases across the system

✓
x

✓y

G
ij

(!, ✓
x

, ✓
y

. . . )

Summation over each ↵ = !, ✓1, . . . , ✓d is implied

Nd = Cd ✏↵0...↵d tr

Z
d!dd✓G�1@↵0G . . .G�1@↵dG

It follows that an edge of a topological insulator 
does not localize in the presence of disorder
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Disorder 31

Old idea of Thouless, Wu, Niu: impose phases across the system

✓
x

✓y

G
ij

(!, ✓
x

, ✓
y

. . . )

Summation over each ↵ = !, ✓1, . . . , ✓d is implied

Nd = Cd ✏↵0...↵d tr

Z
d!dd✓G�1@↵0G . . .G�1@↵dG

N0(⇤)�N0(�⇤) = 1

✏

�⇤
⇤ ✓

d = 2 : This edge level must be 
delocalized

It follows that an edge of a topological insulator 
does not localize in the presence of disorder
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Sigma models with “topological” terms 32

Describe lack of localization at the boundary of an insulator

S ⇠ �

Z
d

d̄
x (@µQ)

2
+ topological term

Topological term = either WZW term or “Z2” term.

Can be added if either ⇡d̄(T ) = Z2 ⇡d̄+1(T ) = Zor

It is believed that these sigma models with topological terms result in the absence of localization

T - target space

10 classes of 
sigma models
first derived by
Altland & Zirnbauer
to describe localization 
properties

d̄ = d� 1

Justifies 10 symmetry
classes of topological 
insulators

From
: Ryu, Schnyder, 

Furusaki, Ludw
ig, 2010 

Sunday, August 19, 12


