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The canonical list of electric forms 
of matter is actually incomplete

Conductor

Insulator

Superconductor

18th century

20th century

Topological Insulator



Electronic States of MatterElectronic States of Matter

Topological Defects in (CH)x

Self conjugate state from
Dirac mass inversion



Summary of First Lecture: The unsual spin charge relation  appears
in the strong coupling limit, where it is a property of atoms and decoupled dimers.

This is adiabatically connected to a continuum limit where it arises 
as a transition in the ground state topology.

Summary of Second Lecture: This 
transition occurs at the boundary between 
a topological insulator and an ordinary 
insulator.



Electronic States of MatterElectronic States of Matter

Topological Insulators

This novel electronic state of matter is 
gapped in the bulk and supports the 
transport of spin and charge in  gapless 
edge states that propagate at the sample 
boundaries. The edge states are …
insensitive to disorder because their 
directionality is correlated with spin.

2005 Charlie Kane and GM
University of Pennsylvania

Electron spin admits a topologically
distinct insulating state



Electronic States of MatterElectronic States of Matter

This state is realized in three dimensional 
materials where spin orbit coupling 
produces a bandgap “inversion.”

It has boundary modes (surface states) with 
a 2D Dirac singularity protected by time 
reversal symmetry.

Bi2Se3 is a prototype.

.
Hasan/Cava (2009) 

Topological Insulators



GrapheneGraphene: the Parent Phase: the Parent Phase



The dispersion of a 
free particle in 2D..

…is replaced
by an unconventional 
E(k) relation on the
graphene lattice

……. it has a critical electronic state. it has a critical electronic state



The low energy theory is described byThe low energy theory is described by
an effective mass theory for an effective mass theory for masslessmassless electronselectrons

     ( )  • ( )Bloch Wavefunction Wavefunction s at K r


 eff FH r iv r  ( ) ( )  
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NOTE: Here the “spin” degree of freedom describes the sublattice
polarization of the state, called pseudospin. In addition electrons carry
a physical spin ½ and an isospin ½ describing the valley degeneracy. 

It is a massless Dirac Theory in 2+1 Dimensions

D.P. DiVincenzo and GM (1984)



A continuum of structures all with 
√3 x √3 period hybridizes the two valleys

Gapping the Dirac PointGapping the Dirac Point
Valley mixing from broken
translational symmetry



Gapping the Dirac PointGapping the Dirac Point
Valley mixing from broken
translational symmetry
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Gapping the Dirac PointGapping the Dirac Point
Charge transfer from broken

inversion symmetry



Gapping the Dirac PointGapping the Dirac Point
Orbital currents from modulated flux 

(Broken T-symmetry)

Gauged second neighbor hopping breaks T. 
“Chern insulator” with Hall conductance e2/h

FDM Haldane “Quantum Hall Effect without Landau Levels” (1988)
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Topological ClassificationTopological Classification
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Topological ClassificationTopological Classification
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 “Chern Insulator” with (has equal contributions
from two valleys)
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Orthodoxy: Spectrum Gapped only for 
Broken Symmetry States

Crucially, this ignores the electron spin

  :na triad of nearest neighbor bond vectors

 ' :nb
 triad of directed “left turn”

second neighbor bond vectors

Breaks P

Breaks TBreaks e-h symmetry



Coupling orbital motion to the 
electron spin 

SOH s V p  
 

( ) ( )V r V r T 
 Microscopic

Lattice model  † † ( )SO m n n m m nH i r r         
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Spin orbit field Bond vector

Intersite hopping with spin precession



Coupling orbital motion to the 
electron spin 
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Breaking mirror symmetry with a perpendicular spin orbit field

Modifies first neighbor coupling by spin dependent potential

 R R x z y y xs s     

Renormalizes Fermi velocity and can fission the Dirac point
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Preserve mirror symmetry with a parallel spin orbit field

Generates a spin-dependent Haldane-type  mass (two copies)

SO SO z z zs   

Coupling orbital motion to the 
electron spin 



Mass Terms (amended)Mass Terms (amended)

z

z z 

z z zs 
x z y y xs s  

,x x x y    Kekule: valley mixing

Heteropolar (breaks P)

Modulated flux (breaks T)

Spin orbit (Rashba, broken z→-z)

Spin orbit (parallel)*
*This term respects all symmetries and 
is therefore present, though possibly weak

spinless

For carbon definitely weak, but still important



Topologically different statesTopologically different states
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Charge transfer insulator Spin orbit coupled insulator

0n  1 ( 1) 0n    

Topology of Chern insulator
in a T-invariant state



Boundary ModesBoundary Modes

Ballistic propagation 
through one-way edge state

Counter propagating spin
polarized edge states
Intrinsic SO-Graphene

model on a ribbon



Quantum Spin Hall EffectQuantum Spin Hall Effect
Its boundary modes are spin filtered 

propagating surface states (edge states)



Comments
The H2 model conserves Sz and is oversimplified. 
Spin, unlike charge, is not conserved. 

But the edge state picture is robust!

Boundary modes: Kramers pair 

(a) Band crossing protected
by T-reversal symmetry

(b) Elastic backscattering 
eliminated by T-symmetry

QSHE: quantum but not quantized



More comments
Counter-propagating surface modes reflect the
bulk topological order. They can only be eliminated
by a  phase transition to a non-topological phase.

weak sublattice
symmetry breaking

strong sublattice
symmetry breaking



Symmetry ClassificationSymmetry Classification

Conductors: unbroken state1

Insulators: broken translational symmetry:
bandgap from Bragg reflection2

Superconductor: broken gauge symmetry

Topological Insulator ?

1possibly with mass anisotropy

2band insulators



Symmetry ClassificationSymmetry Classification
Ordinary insulators and topological insulators are distinguished
by a two-valued (even-odd) surface index.

Kramers Theorem: T-symmetry requires E(k,) =E(-k,)

But at special points k and -k are identified (TRIM)

even: ordinary (trivial) odd: topological

Kane and GM (2005)



Bulk Signature
The surface modes reflect bulk topological order

distinguished by a bulk symmetry
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e.g. TKKN invariant = Chern number = Hall conductance 

T-reversal symmetry requires n=0
“Spin Chern number” in Sz conserving model

is nontopological
TI index is defined mod 2



BulkBulk timetime--reversal invariant reversal invariant momentamomenta

Symmetry-protected twofold degeneracy at opposing
points (d and –d) on Bloch sphere

2 2
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Comparison of T reversal pairs allows
topological classification of ground state



Diagnostic for Topological Order:Diagnostic for Topological Order:

Periodic part of Bloch state: ( ) ( ; )ik r
n nu k e k r 

   

Q. How different are                and ?          ( )n N
u k

 ( )n N
u k


A. For a trivial atomic insulator they are the same

A. For N bands quantify by ( ) ( ) | | ( )mn m nw k u k u k  
  

Antisymmetric: periodic complex-valued ( ) Pf (w)P k 


( ) 0P k 


points (vortices) at k

but never at TRIM (k=-k)

Kane and GM (2005)



PfaffianPfaffian TestTest
Count the zeroes of           in one half of Brillouin zone

Zero: Trivial, like an atomic insulator

Even: Adiabatically connected to atomic insulator
by pairwise annihilation of its zeroes

Odd: Can’t be adiabatically connected to atomic
insulator since               is forbidden at TRIM.( ) 0P k 



Direct integration requires a smooth gauge and  is awkward

( )P k




PointwisePointwise Integration RulesIntegration Rules
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0 0)a  Atomic insulator: all  (or  

0 :  exchange Kramers partners a b  

1 2 3 4
0Gauge Invariant Products:  a a a a    

Track sign changes of ’s between TRIM

0 :  

"conventional"

a
a
  0 :a

a
    

"topological"

Fu, Kane and GM (2007)



With inversion symmetryWith inversion symmetry
Ordinary insulators and topological insulators are distinguished
by a two-valued ( = 0,1) bulk index.
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m

  (parity eigenvalues, 1)

Fu, Kane and GM (2007)



Example: one orbital diamond lattice



Example: BixSb1-x

Fu Kane (2007)
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