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Summary of Second Lecture: A two-valued integer index distinguishes
conventional and topological insulators. A change of this index at a  boundary
between insulators signals the existence of symmetry-protected Dirac modes
propagating along the interface. 

Summary of Third Lecture: This physics is realized in a family of 2D and 
3D crystalline solids.  Goal: connect band theoretic analysis of the bulk and 
low energy representation of its protected interface states.



Gapping the Gapping the GrapheneGraphene Dirac PointDirac Point
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Counterpropagating spin-filtered
edge states

Edge: Hamiltonian undergoes a
single mass inversion 
(at K or K’) in each spin sector 

topological conventional

SpinSpin--filtered edge statesfiltered edge states



CommentsComments

The energy scale for this effect is very small 
(carbon is a light atom)

But the physics is robust (topological)

Hybrid structures:
“enhance” spin orbit field from adsorbed 
heavy metallic species

Spin-orbit coupled semiconductors:
Band inversion occurs in narrow gap
semiconductors with strong s-o coupling



B. A. Volkov and O. A. Pankratov, JETP Lett. 42, 178 (1985)

History: special interface states at a History: special interface states at a 
bandband--inverting junctioninverting junction

Pb1-xSnxTe alloys: interface states controlled by asymptotics



Band inversion in IIBand inversion in II--VI semiconductorsVI semiconductors

“conventional”“inverted”
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Recent history: level ordering in a Recent history: level ordering in a 
IIII--VI (001) quantum wellVI (001) quantum well

k=0 states are indexed by axial symmetry

1/ 2 6 8, 1/ 2 , 1/ 2       

3/ 2 8 , 3 / 2   

With low energy space spanned by 4x4
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“Decoupled 2x2 blocks”

Konig et al (Molenkamp group) (2007)



Representation as two state systemRepresentation as two state system
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Mass inversion occurs for a “wide” quantum well

Bernevig, Hughes and Zhang (BHZ, 2006)



with anomalous Landau quantizationwith anomalous Landau quantization

conventional inverted



2D QSHE is observed via ballistic 2D QSHE is observed via ballistic 
transport through its edge modestransport through its edge modes

Molenkamp group  (2007, 2008)



2D experimental status2D experimental status

The realization of 2D QSHE in HgTe quantum wells
requires strong spin-orbit coupling and broken cubic
symmetry in a thin heterostructure.
(challenging fabrication, T~30 mK, B~ 10 T)

The “decorated graphene” strategy remains an 
unsolved experimental challenge.

Amazingly, this physics occurs
spontaneously in 3D materials that are readily
synthesized and measurable at RT.



Examples in 3DExamples in 3D
Alloys of BixSb1-x : Band inversion at three L points. Z2=-1 for range of x 

Bi2Se3 and related tri-chalcogenides. Stacked quintuple layers.

Mass reversal  → interface state → spin texture



A kindergarten metaphorA kindergarten metaphor
1D Edge of a 2D Topological Insulator is like this

P.G. Silvestrov, P.W. Brouwer and E.G. Mischenko “On the structure
of surface states of topological insulators” arXiv:1111.3650v3
A. Medhi and V.B. Shenoy “Continuum Theory of Edge States of Topological
Insulators” arXiv:1202.3863v1
F. Zhang, C.L. Kane and GM “Surface States of Topological Insulators”
arXiv:1203.6382v1

2D Boundary of a 3D Topological Insulator is more like



2D topological insulators admits a
simple theory of the 1D helical edge states

Outline of calculation in 2D :
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the protected edge state is robust
but this result is fragile

S.C. Zhang group (2009)



Level ordering in BiLevel ordering in Bi22SeSe33

atoms bonds parity crystal field spin orbit

Layered structure 3R m

band
inversion

H. Zhang et al  (Shoucheng Zhang group, 2009)



BiBi22SeSe33 as TI Prototypeas TI Prototype
Eight bulk time reversal invariant momenta: , Z, F(3), L(3).  

Band inversion is confined to small momenta near  (occupied
bands “buried” at seven other TRIM). 

Hasan/Cava (2009)

ARPES: Single symmetry-protected 
Dirac cone measured on the (001) face



Graphene Topological Insulator

Pairs of DP’s
(chiral partners)

Single DP
(partner on opposite face)

Gapped by T-preserving
z potential (breaks P)

Ungapped by any T-preserving
(protected Kramers pair)

Spin and valley degeneracies
hide odd half-integral QHE

Odd half-integral QHE
on a single face (TI=1/4 graphene)

Weak trigonal warping Strong hexagonal warping

Small quantum corrections in MR Weak antilocalization in both
surface and bulk channels

g ~ 2 g ~ 30

N/A Face-dependent spectra:
topological continuity via side faces

 (helical)h v p 
  ˆ  (twisted, chiral)h v n p  

 



Topological Insulator Surface StatesTopological Insulator Surface States
Bulk Boundary Correspondence:
The properties of the edge modes are determined
by the bulk symmetries of the materials joined 
at the interface. (i.e. mass reversal)
Single Valley Physics:
Bi2Se3 –type materials have a single band inversion 
near . The long wavelength theory is a gradient
expansion within a single valley (minimal model).

Bulk Anisotropy: 
The bulk Hamiltonian is not isotropic
(Bi2Se3 is a layered material). Surface properties
are therefore strongly face-dependent.



Bulk HamiltonianBulk Hamiltonian
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More preciselyMore precisely

This 3D extension of this idea is subtle. 

Most properties of the edge modes (energy in gap, 
spin structure, influence of bulk anisotropy, sensitivity to 
surface localized potentials, etc.) are accessible in the four
band theory but require a specification of the boundary 
condition that terminates the bulk Hamiltonian. 

For an ideal termination of a 3D TI this is given by a 
“topological boundary condition.” For nonideal terminations 
this is augmented by a two-parameter family of surface
localized potentials  constrained by P and T symmetries.

Fan Zhang, Kane and GM (2012)



Topological Boundary Condition ITopological Boundary Condition I

Topological interface is characterized
by a mass inversion at the TI surface. 
Four-band degrees of freedom boosted
to mass scale M. 

For M>>m0 exterior wf specifies
termination condition for bulk
evanescent waves. 



Surface State HamiltonianSurface State Hamiltonian
  surf y x x yH v k k  The primitive theory of the (001) surface: 

Inherits important quadratic terms that break e-h symmetry and
shift the Kramers point from the midgap



Crystal Face DependenceCrystal Face Dependence
These effects are both strong and crystal face dependent because of
the anisotropy of the bulk Hamiltonian

Vacuum (isotropic)

TI (R3m)

top face

side face



 001  Surface (cleavage plane)

1 2General surface has  structure! S S
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Structure of four band modelStructure of four band model
Fan Zhang, Kane and GM (2012)



FaceFace--dependent Dirac physicsdependent Dirac physics

And  the energy of the DP

Anisotropy in bulk SO coupling
determines spin texture of 
its protected surface mode

self doping at step edges



Hexagonal warping and spin textureHexagonal warping and spin texture
   3 3 zsurf y x x yH v k k k k       

Symmetry allowed coupling
warps FS (seen) and tips

Spin out of plane on cleavage surface

Chen (2009), Fu (2010), Gedik group (2011) 



Topological Boundary Condition IITopological Boundary Condition II

Nonideal interface projected into
four-band representation has an 
additional surface potential that
rotates the wf of the target state.

J-R boundary condition &
mismatch condition from
surface potential specifies
termination of its bulk 
evanescent states.

Fan Zhang, Kane and GM (2012)



Quantum well states from band bending

Chemical shift:
differential shift of DP

within gap

Field effect:
band bending and

quantum confinement

Chen et al (2012),
Bahramy et al. (2012)



For the surface of a strong topological insulator
the SHAPE COUNTS

All STI faces support a Dirac node
but the orbital and spin texture are 

nonuniversal and crystal face-dependent



Kramers TRIM Degeneracy

Symmetry Breaking by FM exchange coupling

Is removed by z

But is shifted by   



1D Chiral Mode along domain wall

Reversing exchange field = mass inversion

1 2Algebra for any noncleavage plane: S S   
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Mass inversion occurs at “edges” for 
uniform exchange field



Edge induced 1D Chiral Modes

Mass inversion at side “edges”

(001) exchange field

Bi2Se3/Fe4Se7
intergrowth

Cava (2012)

Fan Zhang, Kane and GM (2012)

sphere

slab

layered
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