
Make: the universal project management tool

Jamie Fairbrother

August 11, 2014

Jamie Fairbrother Make: the universal project management tool August 11, 2014 1 / 19

1 Motivation and basic usage

2 Writing Makefiles

3 Conclusions

Jamie Fairbrother Make: the universal project management tool August 11, 2014 2 / 19

Motivation

Computer projects, such as building software or large documents, may
often involve processing several different files

Terminal commands for this processing may be complicated

These projects may have complicated dependency structures

Running all required build commands is tedious and error-prone

Jamie Fairbrother Make: the universal project management tool August 11, 2014 2 / 19

A simple C++ project

g++ -c regression.cpp -o regression.o

g++ -c main.cpp -o main.o

g++ main.o regression.o -larmadillo -o main

Jamie Fairbrother Make: the universal project management tool August 11, 2014 3 / 19

A LaTeX project

Rscript --no-slave plot_1.R

Rscript --no-slave make_results_table.R

Rscript --no-slave plot_2.R

inkscape diagram.svg --export-png diagram.png

latexmk -pdf paper.tex

Jamie Fairbrother Make: the universal project management tool August 11, 2014 4 / 19

Make

(GNU) Make is a dependency management tool used to build and
maintain projects

It has been around since the 1970s

It is by far the most popular tool for building software on Unix-like
systems

It is extremely portable: Linux operating systems come with Make
installed

Jamie Fairbrother Make: the universal project management tool August 11, 2014 5 / 19

Basic usage

To use Make in your project, you first must create a text file called
Makefile in your project directories

This Makefile will contain the dependency structure of your project,
and instructions on how to make each component

To build a target you simply run make with the name of the target,
for example:

make paper.pdf

On its invocation, Make parses the Makefile for the project
dependency structure and runs the required commands to build the
project

Make is economical: it only rebuilds those components that need
rebuilding

Jamie Fairbrother Make: the universal project management tool August 11, 2014 6 / 19

Writing Makefiles

A Makefile consists of a list of rules

Each rule specifies a target, prerequisites, and build commands for
building the target from the prerequisites

target: prereq1 prereq2 ...

build commands

Jamie Fairbrother Make: the universal project management tool August 11, 2014 7 / 19

An example Makefile

1 main: main.o regression.o

2 g++ main.o regression.o -larmadillo -o main

3
4 main.o: main.cpp regression.hpp

5 g++ -c main.cpp -o main.o

6
7 regression.o: regression.cpp regression.hpp

8 g++ -c regresion.cpp -o regression.o

Jamie Fairbrother Make: the universal project management tool August 11, 2014 8 / 19

When Make is run the following things happen:
1 Make looks for a rule to build the specified target
2 Make checks whether the target needs building or rebuilding
3 A target needs rebuilding if it doesn’t already exist, it is older than one

or more of its prerequisites, or its prerequisites need rebuilding - make
works recursively

Jamie Fairbrother Make: the universal project management tool August 11, 2014 9 / 19

Using variables

Variables can be set and used in similar manner to how they are used
in BASH scripts

Variables are often used to store:
I A set of compiler flags commonly used in a Makefile
I Specify include/library directories required for compilation/linkage
I Lists of libraries required for linkage

1 CPLEX_DIR =/opt/ibm/ILOG/CPLEX_Studio126

2 LIB_DIR=-L $(CPLEX_DIR)/cplex/lib/x86 -64 _linux/static_pic -L $(CPLEX_DIR)/ concert/lib/x86 -64 _linux/static_pic

3 INC_DIR=-I $(CPLEX_DIR)/cplex/include -I $(CPLEX_DIR)/ concert/include

4 LIBS=-lilocplex -lconcert -lcplex -lm -lpthread

5 FLAGS=-DIL_STD -std=c++11

6
7 network: network.cpp

8 g++ $(INC_DIR) $(FLAGS) $(LIB_DIR) network.cpp $(LIBS) -o network

Jamie Fairbrother Make: the universal project management tool August 11, 2014 10 / 19

Automatic variables

Automatic variables are in-rule variables which make build commands
easier write and maintain

Automatic Variable Meaning

$@ the target

$< the first prerequisite

$ˆ all prerequisites

$? only prerequisites which have changed

main: main.o regression.hpp

g++ main.o regression.o -larmadillo -o main

main.o: main.hpp regression.hpp

g++ -c main.cpp -o main.o

regression.o: regression.cpp regression.hpp

g++ -c regresion.cpp -o regression.o

Jamie Fairbrother Make: the universal project management tool August 11, 2014 11 / 19

Automatic variables

Automatic variables are in-rule variables which make build commands
easier write and maintain

Automatic Variable Meaning

$@ the target

$< the first prerequisite

$ˆ all prerequisites

$? only prerequisites which have changed

main: main.o regression.hpp

g++ $^ -larmadillo -o $@

main.o: main.cpp regression.hpp

g++ -c $< -o $@

regression.o: regression.cpp regression.hpp

g++ -c $< -o $@

Jamie Fairbrother Make: the universal project management tool August 11, 2014 11 / 19

Pattern rules

Often a set of targets will follow the exact same build pattern

In this case the user can specify a pattern rule

In a pattern rule, the base of a file is represented by a %

Pattern rules help scale Makefile to large projects

Simulation_Base.o: Simulation_Base.cpp Simulation_Base.hpp

g++ -c $< -o $@

Simulation_Serial.o: Simulation_Serial.cpp Simulation_Serial.hpp

g++ -c $< -o $@

Simulation_Parallel.o: Simulation_Parallel.cpp Simulation_Parallel.hpp

g++ -c $< -o $@

libSimulation.a: Simulation_Base.o Simulation_Serial.o SimulationParallel.o

ar rv $@ $<

main: main.cpp libSimulation.a

g++ $^ -o $<

Jamie Fairbrother Make: the universal project management tool August 11, 2014 12 / 19

Pattern rules

Often a set of targets will follow the exact same build pattern

In this case the user can specify a pattern rule

In a pattern rule, the base of a file is represented by a %

Pattern rules help scale Makefile to large projects

%.o: %.cpp %.hpp

g++ -c $< -o $@

libSimulation.a: Simulation_Base.o Simulation_Serial.o SimulationParallel.o

ar rv $@ $?

main: main.cpp libSimulation.a

g++ $^ -o $<

Jamie Fairbrother Make: the universal project management tool August 11, 2014 12 / 19

Utilities: clean

Beside building projects, rules can be used to create general utilities

A common utility is clean which is used to remove all files generated
in the build process

.PHONY:

clean:

rm -f *.o *.a *~ main

A clean command for a C++ project

Jamie Fairbrother Make: the universal project management tool August 11, 2014 13 / 19

Utilities: dist

Another common utility is a rule to package a project up for
distribution

Typically projects are distributed in tarballs or zip files

PRJ=C++ _project

.PHONY:

dist: clean

(cd ..; tar cvzf $(PRJ).tgz $(PRJ))

A dist command for a C++ project

Note that utilities like clean and dist should be declared .PHONY so that
make does not search for files of the same name

Jamie Fairbrother Make: the universal project management tool August 11, 2014 14 / 19

A more advanced Makefile

1 PRJ=latex_project

2 SVG_IMAGES = diagram.png

3
4 paper.pdf: paper.tex $(SVG_IMAGES) plot_1.pdf plot_2.pdf

5 latexmk $< -pdf $@

6
7 $(SVG_IMAGES):

8 %.png: %.svg

9 inkscape $< --export -png $@

10
11 plot_1.pdf: plot_1.R

12 Rscript --slave $< $@

13
14 plot_2.pdf: plot_2.R results.csv

15 Rscript --slave $< $@

16
17 results.csv: make_results_table.R

18 Rscript --slave $<

19
20 .PHONY:

21 clean:

22 latexmk -C

23 rm -f *.pdf *.csv *~ *.bbl *.png

24
25 .PHONY:

26 dist: clean

27 (cd ..; tar cvzf $(PRJ).tgz $(PRJ))

Jamie Fairbrother Make: the universal project management tool August 11, 2014 15 / 19

Why use Makefiles?

Facilitates build process by running all required build commands
automatically

Users of your project do not need to understand, or be given detailed
instructions on how to build your project - they simpley run make

Make can be used to provide useful utilities

Jamie Fairbrother Make: the universal project management tool August 11, 2014 16 / 19

Why not just use an IDE for C/C++ projects?

Make is more portable (and readable) than IDE project files

Make is more flexible

Writing Makefiles gives you a better understanding of the compilation
process

Jamie Fairbrother Make: the universal project management tool August 11, 2014 17 / 19

Getting more help

Ask someone who uses it (Emma, Christian, Terry, Jamie, etc.)

Use Google

Download and use the official Make texinfo page:

sudo apt -get install make -doc

info make

Note that this can be used inside Emacs

Jamie Fairbrother Make: the universal project management tool August 11, 2014 18 / 19

Any questions?

Jamie Fairbrother Make: the universal project management tool August 11, 2014 19 / 19

	Motivation and basic usage
	Writing Makefiles
	Conclusions

