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PROBLEM

Setup: We have a growing body of sequences of
data. Each sequence is generated by on of k un-
known discrete-time stochastic process. The num-
ber k of distributions is known.
Data are observed in an online fashion:
→ New samples arrive at every time-step;
they either are continuations of previously
received sequences or a new sequences. Goal: Cluster the sequences at every time-step.

CONSISTENCY
In general it is hard to give a precise definition for
“correct clustering”.
But, a natural notion for correct clustering exists
in the considered setting:

Sequences generated by the same process
distribution should be grouped together.

Asymptotic Consistency: A clustering algorithm is
(asymptotically) consistent if, with probability 1,
for each N ∈ N from some time on, it clusters the first
N observed sequences are clustered correctly.

ASSUMPTIONS ON DATA
• Data revealed in an arbitrary fashion.
• Our only assumption is that the distributions
generating the data are stationary-ergodic.
→ The samples are allowed to be dependent and
the dependence can be arbitrary, or even adver-
sarial. No such assumptions as iid, Markov etc.
Remark: In time-series literature, it is typically as-
sumed that the distributions generating the data have
a known form, ex. Gaussian, HMMs etc., and the sam-
ples are independent.

MAIN THEORETICAL RESULT
Theorem: There exists an online clustering algo-
rithm that is asymptotically consistent provided that
the distributions generating the data are stationary
and ergodic.

PROPOSED ALGORITHM
Key Idea:

Combine Batch Clusterings with Weights!
Algorithm
1. For j = k..N(t), use a (consistent) batch al-
gorithm on xt

1, . . . ,x
t
j to obtain k cluster centers:

cj1, . . . , c
j
k.

2. Calculate two sets of weights:

i. γj = min
i 6=i′∈1..k

d̂(cji , c
j
i′)

the min inter-
cluster distance.

ii. wj = j−2 the
chronological
weight.

3. Assign points to clusters: For every sequence
x, choose the index i ∈ 1..k, s.t. i minimizes,

1

η

N(t)∑
j=1

wjγj d̂(x, c
j
i )

where, η :=
∑N(t)

j=1 wjγj is the normalization factor.

IDEA OF THE PROOF

1. The distance d̂(·, ·) is consistent:

→ The performance
weight γj converges
to 0, when the
cluster-centers are
obtained from se-
quences generated by
less than k processes.

2. The batch algorithm is consistent [1]:
→ Once samples from all k clusters are observed,
from some time on, the cluster-centers cj1, . . . , c

j
k

are consistently chosen to each, uniquely repre-
sent one of the k distributions.
3. Algorithm is not confused by “bad" points:
Sets of sequences xt

1, . . . ,x
t
j for larger j contain

potential “bad” points: newly formed sequences,
with inaccurate distance estimates. Decisions
based on earlier sequences are more reliable.
→ The chronological weight wj gives precedence
to cluster-centers cj1, . . . , c

j
k produced earlier, i.e.

smaller j.

DISTANCE MEASURE
We measure the distance between two sequences
x1 ∈ Rn1 and x2 ∈ Rn2 as

d̂(x1,x2) :=
∞∑

m,l=1

2−(m+l)
∑

B∈Bm,l

|ν(x1, B)− ν(x2, B)|

where Bm,l m, l ∈ N is the set of all hypercubes of di-
mension m and edge-length 2−l and ν(x, B) is the fre-
quency with which x crosses B.
Theorem: (d̂(·, ·) is consistent) [1]
If x1 and x2 are generated by stationary-ergodic
processes ρ1 and ρ2, then d̂(x1,x2) converges to
the so-called distributional-distance:

d(ρ1, ρ2) :=

∞∑
m,l=1

2−(m+l)
∑

B∈Bm,l

|ρ1(B)− ρ2(B)|

EXPERIMENTAL RESULTS
1. Synthetic Data
Setup: We generated a data matrix X, where each
row a sequence generated by one of the five pro-
cesses, k = 5.
Batch Simulation: Data revealed via a rectangu-
lar window extended over X.
Online Simulation: Data revealed via a triangu-
lar window extended over X.
Remark: We use processes that, while being stationary-
ergodic do not belong to any “simpler” class. They
cannot be modeled as a hidden Markov process with a
countable set of states.
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Top: error-rate vs. sequence-length in batch setting
(both algorithms are consistent). Bottom: error-rate vs.
# of samples in online setting (the offline algorithm is
constantly confused by the new sequences).
2. Real Data:

(Clustering Motion Capture Sequences)
Setup: We used time-series data from [2] repre-
senting human locomotion; sequences are marker
positions tracked spatially through time.

Objective: Cluster the video sequences based on
the activity they represent, ex. Walking, Running,
etc.
We compare against [3] and [4].

Dataset [3] f(·, ·)
Walk vs. Run (#35) 0.1015 0
Walk vs.Run (#16) 0.3786 0.2109

Dataset [4] f(·, ·)
Ergodic Motions
Run vs. Run/Jog 100% 100%
Walk vs. Run/Jog 95% 100%
Non-ergodic Motions
Jump vs. Jump fwd. 87% 100%
Jump vs. Jump fwd. 66% 60%

Top: Comparison against [3]; (performance measure:
entropy of the true labeling with respect to the pre-
diction) Bottom: Comparison against [4]; (performance
measure: the percentage of correct classification). The
numerical of [3, 4] results are taken directly from their
corresponding articles.; the same sets of sequences,
and means of evaluation are used.

REFERENCES

[1] D. Ryabko. Clustering processes. ICML 2010.
[2] CMU graphics lab motion capture database.
[3] Lei Li and B. Aditya Prakash. Time series clustering: Com-

plex is simpler! ICML 2011.
[4] T. Jebara, Y. Song, and K. Thadani. Spectral clustering and

embedding with HMMs. ECML 2007.


