

ONLINE CLUSTERING OF PROCESSES

AZADEH KHALEGHI, DANIIL RYABKO, JÉRÉMIE MARY, PHILIPPE PREUX

Problem

Setup: We have a growing body of sequences of data. Each sequence is generated by on of k unknown discrete-time stochastic process. The number *k* of distributions is known.

Data are observed in an online fashion: \rightarrow New samples arrive at every time-step; they either are continuations of previously received sequences or a new sequences.

Class Labels (never visible to the learner)

Goal: Cluster the sequences at every time-step.

EXPERIMENTAL RESULTS

1. Synthetic Data

Setup: We generated a data matrix **X**, where each row a sequence generated by one of the five processes, k = 5.

Batch Simulation: Data revealed via a rectangular window extended over **X**.

Online Simulation: Data revealed via a triangular window extended over **X**.

Remark: We use processes that, while being stationaryergodic do not belong to any "simpler" class. They cannot be modeled as a hidden Markov process with a countable set of states.

CONSISTENCY

In general it is hard to give a precise definition for "correct clustering".

But, a natural notion for correct clustering exists in the considered setting:

Sequences generated by the same process distribution should be grouped together.

Asymptotic Consistency: A clustering algorithm is (asymptotically) consistent if, with probability 1, for each $N \in \mathbb{N}$ from some time on, it clusters the first *N* observed sequences are clustered correctly.

MAIN THEORETICAL RESULT

There exists an online clustering algo-**Theorem:** rithm that is asymptotically consistent provided that the distributions generating the data are stationary and ergodic.

PROPOSED ALGORITHM

Key Idea:

Combine Batch Clusterings with Weights! Algorithm

1. For j = k..N(t), use a (consistent) batch algorithm on $\mathbf{x}_1^t, \ldots, \mathbf{x}_i^t$ to obtain k cluster centers:

ASSUMPTIONS ON DATA

• Data revealed in an **arbitrary** fashion. • Our **only assumption** is that the distributions generating the data are **stationary-ergodic**. \rightarrow The samples are allowed to be **dependent** and the dependence can be **arbitrary**, or even **adver**sarial. No such assumptions as iid, Markov etc. **Remark:** In time-series literature, it is typically assumed that the distributions generating the data have a known form, ex. Gaussian, HMMs etc., and the samples are independent.

DISTANCE MEASURE

We measure the distance between two sequences $\mathbf{x}_1 \in \mathbb{R}^{n_1}$ and $\mathbf{x}_2 \in \mathbb{R}^{n_2}$ as

 $\hat{d}(\mathbf{x}_1, \mathbf{x}_2) := \sum_{n=1}^{\infty} 2^{-(m+l)} \sum_{n=1}^{\infty} |\nu(\mathbf{x}_1, B) - \nu(\mathbf{x}_2, B)|$ $B \in B^m$, m, l=1

$\mathbf{x}_{N(t)}^{t} =$

2. Calculate two sets of weights:

i. $\gamma_j = \min_{i \neq i' \in 1..k} \hat{d}(c_i^j, c_{i'}^j)$ ii. $w_j = j^{-2}$ the chronological min interthe weight. cluster distance.

3. Assign points to clusters: For every sequence **x**, choose the index $i \in 1..k$, s.t. *i* minimizes,

 $\frac{1}{n}\sum w_j\gamma_j\hat{d}(\mathbf{x},c_i^j)$

where, $\eta := \sum_{j=1}^{N(t)} w_j \gamma_j$ is the normalization factor.

IDEA OF THE PROOF

1. The distance $\hat{d}(\cdot, \cdot)$ is consistent:

 \rightarrow The performance

Top: error-rate vs. sequence-length in batch setting (both algorithms are consistent). Bottom: error-rate vs. # of samples in online setting (the offline algorithm is constantly confused by the new sequences). 2. Real Data:

(Clustering Motion Capture Sequences) Setup: We used time-series data from [2] representing human locomotion; sequences are marker positions tracked spatially through time.

Objective: Cluster the video sequences based on the activity they represent, ex. Walking, Running, etc.

where $B^{m,l}$ $m, l \in \mathbb{N}$ is the set of all hypercubes of dimension m and edge-length 2^{-l} and $\nu(\mathbf{x}, B)$ is the frequency with which \mathbf{x} crosses B. **Theorem:** $(\hat{d}(\cdot, \cdot) \text{ is consistent})$ [1] If x_1 and x_2 are generated by stationary-ergodic processes ρ_1 and ρ_2 , then $d(\mathbf{x}_1, \mathbf{x}_2)$ converges to the so-called **distributional-distance**:

 $d(\rho_1, \rho_2) := \sum_{m,l=1}^{\infty} 2^{-(m+l)} \sum_{B \in B^{m,l}} |\rho_1(B) - \rho_2(B)|$

REFERENCES

- [1] D. Ryabko. Clustering processes. ICML 2010.
- [2] CMU graphics lab motion capture database.
- [3] Lei Li and B. Aditya Prakash. Time series clustering: Complex is simpler! ICML 2011.
- [4] T. Jebara, Y. Song, and K. Thadani. Spectral clustering and embedding with HMMs. ECML 2007.

weight γ_i converges 0, when the to cluster-centers are obtained from sequences generated by less than k processes.

2. The batch algorithm is consistent [1]:

 \rightarrow Once samples from all *k* clusters are observed, from some time on, the cluster-centers c_1^j, \ldots, c_k^j are consistently chosen to each, uniquely represent one of the *k* distributions.

3. Algorithm is not confused by "bad" points: Sets of sequences $\mathbf{x}_1^t, \ldots, \mathbf{x}_j^t$ for larger j contain **potential "bad" points**: newly formed sequences, with inaccurate distance estimates. **Decisions** based on earlier sequences are more reliable. \rightarrow The chronological weight w_i gives precedence to cluster-centers c_1^j, \ldots, c_k^j produced earlier, i.e. smaller *j*.

We compare against [3] and [4].

Dataset	[3]	$f(\cdot, \cdot)$
Walk vs. Run (#35)	0.1015	0
Walk vs.Run (#16)	0.3786	0.2109
Dataset	[4]	$f(\cdot, \cdot)$
Ergodic Motions		
Run vs. Run/Jog	100%	100%
Walk vs. Run/Jog	95%	100%
Non-ergodic Motions		
Jump vs. Jump fwd.	87%	100%
Jump vs. Jump fwd.	66%	60%

Top: Comparison against [3]; (performance measure: entropy of the true labeling with respect to the prediction) Bottom: Comparison against [4]; (performance measure: the percentage of correct classification). The numerical of [3, 4] results are taken directly from their corresponding articles.; the same sets of sequences, and means of evaluation are used.