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Abstract. This paper is a survey of bounds and constructions for sub-
space codes designed for the injection metric, a distance measure that
arises in the context of correcting adversarial packet insertions in linear
network coding. The construction of lifted rank-metric codes is reviewed,
along with improved constructions leading to codes with strictly more
codewords. Algorithms for encoding and decoding are also briefly de-
scribed.

1 Introduction

Let Fq be the finite field of size q, and let Fnq denote the vector space of n-
tuples over Fq. The set of all subspaces of Fnq , called the projective space of
order n over Fq, is denoted Pq(n). The set of all k-dimensional subspaces
of Fnq , called a Grassmannian, is denoted Gq(n, k), where 0 ≤ k ≤ n.
Obviously Pq(n) =

⋃n
k=0 Gq(n, k).

A (subspace) code C is a nonempty collection of subspaces of Fnq , i.e.,
a non-empty subset of Pq(n). Unlike classical coding theory, where each
codeword is a vector, here each codeword of C is itself an entire space of
vectors. A code in which each codeword has the same dimension, i.e.,
a code contained within a single Grassmannian, is called a constant-
dimension code.

As in classical coding theory, it is important to define a distance
measure between codewords. One possible distance measure between two
spaces U and V in Pq(n)—though not the metric of main interest in this
paper—is the so-called subspace metric

dS(U, V ) , dim(U) + dim(V )− 2 dim(U ∩ V ),

introduced in the context of error- and erasure-correction in linear net-
work coding [1]. The measure that will be of main interest here, however,
is the injection distance d(U, V ), introduced in the later paper [2], and
given by

d(U, V ) , max{dim(U), dim(V )} − dim(U ∩ V ).



This function is indeed a metric on Pq(n) [2]. The injection distance and
the subspace distance are closely related, as

d(U, V ) =
1
2
dS(U, V ) +

1
2
| dim(V )− dim(U)|, ∀U, V ∈ Pq(n). (1)

In fact, the two metrics are equivalent when U and V have the same
dimension, i.e., if dim(U) = dim(V ) then dS(U, V ) = 2 d(U, V ). Denote by
U + V the sum of U and V , i.e., let U + V = {u+ v : u ∈ U, v ∈ V }. The
relation dim(U+V ) = dim(U)+dim(V )−dim(U∩V ) gives the alternative
expressions

d(U, V ) = dim(U + V )−min{dim(U), dim(V )} and
dS(U, V ) = 2 dim(U + V )− dim(U)− dim(V )

= dim(U + V )− dim(U ∩ V )

for two metrics.
The minimum distance between distinct codewords in a code C is

denoted as d(C) if the injection metric is used and as dS(C) if the subspace
metric is used, i.e.,

d(C) , minU,V ∈C : U 6=V d(U, V ) and dS(C) , minU,V ∈C : U 6=V dS(U, V ).

It follows from (1) that

d(C) ≥ 1
2
dS(C), (2)

with equality if (but not only if) C is a constant dimension code.
A code C ⊆ Pq(n) is called an (n, d)q code if d(C) = d, and is called

an (n, d, k)q code if, additionally, C ⊆ Gq(n, k). Similarly, C is called an
(n, d)S

q code if dS(C) = d. The latter notation follows the convention,
used throughout this paper, that if a concept is defined for the injection
metric, then the analogous concept for the subspace metric is denoted by
a superscript S. We will, however, have no occasion to refer to an (n, d, k)S

q

code, since such a code is an (n, d/2, k)q code. We denote by Aq(n, d) and
Aq(n, d, k) the sizes of a largest (n, d)q code and a largest (n, d, k)q code,
respectively.

Subspace codes turn out to be the natural objects in several applica-
tions, such as noncoherent linear network coding [1–5] and linear authen-
tication [6, 7]. For linear authentication, it is shown in [6, Theorem 4.1]
that every (n, d, k)q code C is an [n, |C|, n − k, d] linear authentication
code over Fq, and vice-versa. For network coding, it is shown in [2, The-
orem 20] that an (n, d)q code can correct any t corrupt packets injected



in a noncoherent linear network coding system with rank deficiency ρ if
and only if d > 2t + ρ. Thus, the packet-error correction capability of a
subspace code for network coding is completely characterized in terms of
the injection distance. Historically, the subspace distance appeared earlier
in this context [1], but it can only provide a correction guarantee (not the
converse), which can be seen from (2).

This paper surveys the existing literature on constructions of (n, d)q
and (n, d, k)q codes, as well as upper and lower bounds on Aq(n, d) and
Aq(n, d, k). Usually, results for general subspace codes are based on pre-
vious results for constant-dimension codes. In view of (2), results for the
subspace metric may also be useful and are reviewed as well.

The remainder of the paper is organized as follows. Section 2 estab-
lishes some useful notation and reviews properties of rank metric codes.
Section 3 discusses bounds on Aq(n, d), Aq(n, d, k) and AS

q (n, d). Sec-
tion 4 reviews existing constructions of general and constant-dimension
subspace codes. Section 5 briefly describes encoding and decoding meth-
ods for subspace codes. The paper ends in Section 6 with some concluding
remarks and a list of open problems.

2 Preliminaries

2.1 Notation and Basic Facts

Let N = {0, 1, 2, . . .}. If A is a finite set, let |A| denote its cardinality.
We will often need to refer to vectors and matrices with compo-

nents from Fq. If v = (v1, . . . , vn) is a vector Fnq , let supp(v) = {i ∈
{1, . . . , n} : vi 6= 0} denote its support and let wt(v) = | supp(v)| denote
its Hamming weight.

Let Fm×nq denote the set of allm×nmatrices over Fq. For concreteness,
a vector in Fnq will be considered as an element of F1×n

q , i.e., as a row
vector. The m × n all-zero matrix and the n × n identity matrix are
denoted by 0m×n and In×n, respectively, where the subscripts may be
omitted when there is no risk of confusion.

Let X ∈ Fm×nq be an m × n matrix. If S is a nonempty subset of
{1, . . . ,m}, then XS is the submatrix of X consisting of the rows indexed
by S (in increasing order). If X is nonzero, then its reduced row eche-
lon form (RREF) is denoted as rref(X). Associated with a nonzero X
is a vector prof(X) ∈ {0, 1}n, called the profile vector of X, in which
supp(prof(X)) is the set of column positions of the leading ones in the
rows of rref(X). If X = 0, then we set prof(X) to the zero vector.



The row space of a matrix X is denoted as 〈X〉. If X ∈ Fm×nq then
〈X〉 ∈ Pq(n). The rank of X is denoted as rank(X) and, of course,
rank(X) = dim (〈X〉). More generally, if X ∈ Fn×mq and Y ∈ FN×mq ,
then 〈[

X
Y

]〉
= 〈X〉+ 〈Y 〉 ;

therefore,

rank

[
X
Y

]
= dim(〈X〉+ 〈Y 〉).

Note that wt(prof(X)) = rank(X).
Associated with a vector space U ∈ Gq(n, k), k > 0, is a unique k × n

matrix XU in RREF (i.e., with XU = rref(XU )) having the property that
〈XU 〉 = U . With a slight abuse of notation we extend the prof function
to vector spaces by defining

prof(U) , prof(XU ),

where prof(U) is the zero vector if dim(U) = 0. Given any binary profile
vector b ∈ {0, 1}n, the so-called Schubert cell [8] in Pq(n) corresponding
to b is the set

Sq(b) = prof−1(b) = {U ∈ Pq(n) : prof(U) = b}.

If wt(b) = k, then Sq(b) ⊆ Gq(n, k). Thus binary profile vectors (in gen-
eral) induce a partition of Pq(n) into 2n distinct Schubert cells, while
binary profile vectors of weight k (in particular) induce a partition of
Gq(n, k) into

(
n
k

)
Schubert cells. These partitions will become useful in

Section 4.
Associated with Gq(n, k) is a distance-regular graph (called a Grass-

mann graph) whose vertices correspond to the elements of Gq(n, k) and
where two vertices are adjacent if the corresponding subspaces intersect
in a space of dimension k − 1 [9]. The Grassmannian Gq(n, k) also forms
an association scheme, the so-called q-Johnson scheme [10, Ch. 30], in
which two spaces are ith associates if they intersect in a space of dimen-
sion k − i, or, equivalently, if they are separated by graph distance i in
the Grassmann graph. When restricted to Gq(n, k), the injection distance
d(·, ·) corresponds to the graph distance in the corresponding Grassmann
graph.

It is well known that the cardinality of the Grassmannian Gq(n, k) is
given by the Gaussian coefficient[

n

k

]
q

=
k−1∏
i=0

(qn − qi)
(qk − qi)

.



The subscript q will be omitted when there is no possibility of confusion.
Note that

[
n
k

]
=
[
n

n−k
]

and
[
n
0

]
=
[
n
n

]
= 1.

Let V ∈ Gq(n, k) be a fixed vector space of dimension k, and let
Nq(n, k, j, `) denote the number of elements W ∈ Gq(n, j) with the prop-
erty that V ∩W ∈ Gq(n, `). We have

Nq(n, k, j, `) = q(k−`)(j−`)
[
k

`

][
n− k
j − `

]
. (3)

To see this, observe that the space U of intersection can be chosen in
[
k
`

]
ways. This subspace can be extended to a j-dimensional subspace in

(qn − qk)(qn − qk+1)(qn − qk+2) · · · (qn − qk+j−`−1)
(qj − q`)(qj − q`+1)(qj − q`+2) · · · (qj − qj−1)

= q(j−`)(k−`)
[
n− k
j − l

]
ways, since we can extend U by adjoining any of the qn − qk vectors not
in V , then adjoining any of the qn − qk+1 vectors not in the resulting
(k+ 1)-space, etc., but any specific choice is in an equivalent class of size
(qj − q`)(qj − q`+1) · · · (qj − qj−1).

The quantity Nq(n, k, j, `) is very useful. For example, Nq(n, n, k, k) =[
n
k

]
(the number of k-subspaces of an n-space, i.e., |Gq(n, k)|),Nq(n, k, j, k) =[

n−k
j−k
]

(the number of j-dimensional spaces containing the k-space V ),

Nq(n, k, k, k − i) = qi
2[k
i

][
n−k
i

]
(the number of k-spaces at injection dis-

tance i from the k-space V ), etc.
Let us also mention here two additional properties of the Gaussian

coefficient [11] [
m

n

][
n

t

]
=
[
m

t

][
m− t
n− t

]
, t ≤ n ≤ m, (4)

and [1, Lemma 5]

qi(n−i) ≤
[
n

i

]
≤ h(q)qi(n−i), (5)

where h(q) =
∞∏
j=0

1
1− q−j

. It is shown in [1] that h(q) decreases mono-

tonically with q, approaching q/(q − 1) for large q. The series for h(q)
converges rapidly; the following table lists h(q) for various values of q.

q 2 3 4 5 7 8 9 11 16 32 64 128 256
h(q) 3.46 1.79 1.45 1.32 1.20 1.16 1.14 1.11 1.07 1.03 1.02 1.01 1.004



2.2 Rank-Metric Codes

For matrices X,Y ∈ Fn×mq , the rank distance is defined as

dR(X,Y ) , rank(Y −X).

As observed in [11], the rank distance is indeed a metric. A rank-metric
code C ⊆ Fn×mq is a matrix code (i.e., a nonempty set of matrices) used
in the context of the rank metric. We use dR(C) to denote the minimum
rank distance of C. The Singleton bound for the rank metric [11,12] (see
also [3, 13,14]) states that

|C| ≤ qmax{n,m}(min{n,m}−d+1)

for every code C ⊆ Fn×mq with dR(C) = d. Codes that achieve this bound
are called maximum-rank-distance (MRD) codes and linear MRD codes
are known to exist for all choices of parameters q, n, m and d ≤ min{n,m}
[11].

Gabidulin codes [11] are an important class of MRD codes, described
as follows. Without loss of generality, assume n ≤ m (otherwise consider
the transposed version of the following argument). Let Fqm be an exten-
sion field of Fq, and let θ : Fqm → Fmq be a vector space isomorphism,
where the elements in Fmq are regarded as row vectors. Let Fnq,m[x] de-
note the set of linearized polynomials, i.e., all polynomials of the form
f(x) =

∑n−1
i=0 fix

qi
, where fi ∈ Fqm . Let α1, . . . , αn ∈ Fqm be elements

that are linearly independent when regarded as vectors in Fmq , and let
0 ≤ d ≤ n.

A Gabidulin code C ⊆ Fn×mq is defined as

C =
{
c ∈ Fn×mq : c = [θ(f(α1)), . . . , θ(f(αn))]T , f(x) ∈ F(n−d+1)

q,m [x]
}
.

It is shown in [11] that such a code has dR(C) = d, so it is indeed an MRD
code.

Given a rank-metric code C ⊆ Fn×mq , a minimum-rank-distance de-
coder for C takes a matrix r ∈ Fn×mq and returns a codeword c ∈ C that
minimizes the rank distance dR(c, r). It is easy to see that, if dR(c, r) <
dR(C)/2 for some c ∈ C, then c is the unique solution to the above problem.
A bounded-distance decoder for C returns c ∈ C if dR(c, r) < dR(C)/2, or
declares a failure if no such codeword can be found. For Gabidulin codes,
very efficient bounded-distance decoders exist; see, e.g., [3, 11].



3 Bounds

In this section, we consider bounds on Aq(n, d, k), Aq(n, d), and AS
q (n, d).

Since
Aq(n, d, k) = Aq(n, d, n− k), (6)

when dealing with Aq(n, d, k), we may safely assume k ≤ n/2.

3.1 Upper Bounds on Aq(n, d, k)

Sphere-Packing Bound: The simplest upper bound that can be ob-
tained for Aq(n, d, k) is the sphere-packing bound, which follows from
the fact that the Grassmann graph corresponding to Gq(n, k) is distance-
regular. First, we need the concept of a sphere in Gq(n, k).

For V ∈ Gq(n, k), let BV (t, k) , {U ∈ Gq(n, k) : d(V,U) ≤ t} be the
set of all subspaces of dimension k at injection distance at most t from
V , a set that we regard as a sphere in Gq(n, k) of radius t with center V .
For any V ∈ Gq(n, k), the size of BV (t, k) is [1]

|BV (t, k)| =
t∑
i=0

qi
2

[
k

i

][
n− k
i

]
, (7)

which follows easily from (3). Note that the size of a sphere in Gq(n, k) is
independent of its center. For convenience, define B(t, k) , |BV (t, k)|.

The following sphere-packing bound for Aq(n, d, k) is given in [1].

Theorem 1 (Sphere-packing bound).

Aq(n, d, k) ≤
[
n
k

]
B(b(d− 1)/2c, k)

.

Singleton Bound: In [1] a puncturing operation in Gq(n, k) is defined
that reduces by one the dimension of the ambient space and the dimension
of each subspace in Gq(n, k). According to this puncturing operation, a
punctured code obtained by puncturing an (n, d, k)q code is itself an (n−
1, d′, k − 1)q code, where d′ ≥ d − 1. If an (n, d, k)q code is punctured
d− 1 times repeatedly, an (n− d+ 1, d′′, k− d+ 1)q code (with d′′ ≥ 1) is
obtained, which may have size no greater than |Gq(n− d+ 1, k − d+ 1)|.
Thus the following Singleton-type bound is established [1].

Theorem 2 (Singleton bound).

Aq(n, d, k) ≤ |Gq(n− d+ 1, k − d+ 1)| =
[
n− d+ 1
k − d+ 1

]
=
[
n− d+ 1
n− k

]
.



We note that from (5) it follows that

Aq(n, d, k) ≤ h(q)q(n−k)(k−d+1). (8)

It is observed in [1] that this bound is always stronger than the sphere-
packing bound of Theorem 1 for nontrivial codes.

Anticode Bound: Since Gq(n, k) is an association scheme, the anticode
bound of Delsarte [15] can be applied. Let C be an (n, d, k)q code. Then
Delsarte’s bound implies that

|C| ≤ |Gq(n, k)|
|A|

,

where A ⊆ Gq(n, k) is any set with maximum distance d − 1 (called an
anticode).

Note that, for all U, V ∈ Gq(n, k), d(U, V ) ≤ d − 1 if and only if
dim(U ∩ V ) ≥ k − d + 1. Thus, we can take A as a set in which any
two elements intersect in a space of dimension at least k − d + 1. From
the results of Frankl and Wilson [16], it follows that, for k ≤ n/2, the
maximum value of |A| is equal to

[
n−k+d−1

d−1

]
. Hence, we have the following

bound.

Theorem 3 (Anticode bound).

Aq(n, d, k) ≤
[
n
k

][
n−k+d−1

d−1

] =

[
n

k−d+1

][
k

k−d+1

] .
The equality in this theorem follows by observing from (4) that

[
n
k

][
k

k−d+1

]
=[

n
k−d+1

][
n−k+d−1

d−1

]
. Applying (5) yields (8).

It is easy to observe that Delsarte’s bound also implies the sphere-
packing bound as a special case, since a sphere BV (b(d− 1)/2c, k) is (by
the triangle inequality) an anticode of maximum distance d−1. However,
a sphere is not an optimal anticode in Gq(n, k), and therefore the bound
of Theorem 3 is always tighter for nontrivial codes.

The bound in Theorem 3 was first obtained by Wang, Xing and Safavi-
Naini in [6] using a different argument. The proof that Theorem 3 follows
from Delsarte’s bound is due to Etzion and Vardy [17].

As observed in [7], the anticode bound is always stronger than the
Singleton bound for non-trivial codes in Gq(n, k).



Johnson-Type Bounds: Associated with an (n, d, k)q code C is a bi-
nary constant weight code of length qn − 1, weight qk − 1, and minimum
Hamming distance 2qk(1− q−d), having |C| codewords. This binary code
has codewords that form the rows of the |C| × (qn − 1) incidence matrix
between codewords of C and the nonzero vectors of Fnq . The classical John-
son bound on binary constant weight codes (e.g., see [18]) immediately
implies the following bound on Aq(n, d, k).

Theorem 4 ([7]).

Aq(n, d, k) ≤ qk(1− q−d)(qn − 1)
(qk − 1)2 − (qn − 1)(qk − 1) + qk(1− q−d)(qn − 1)

.

Now let C be an (n, d, k)q code with Aq(n, d, k) codewords. For any
subspace U ∈ Gq(n, n−1) of dimension n−1, let CU be the set of codewords
of C contained entirely in U . Clearly CU is an (n − 1, d, k)q code, and so
cannot have cardinality greater than Aq(n − 1, d, k). If we now form the
summation of such cardinalities, ranging over all possible U , we obtain

∑
U∈Gq(n,n−1)

|CU | =
(
qn−k − 1
q − 1

)
Aq(n, d, k) ≤

(
qn−1 − 1
q − 1

)
Aq(n− 1, d, k),

where the first equality follows from the fact that each codeword of C
will appear as a codeword in exactly (qn−k − 1)/(q − 1) of the CU ’s. This
argument yields the following theorem [17].

Theorem 5 ([17]).

Aq(n, d, k) ≤ qn − 1
qn−k − 1

Aq(n− 1, d, k)

Applying (6) results in the following.

Theorem 6 ([7, 17]).

Aq(n, d, k) ≤ qn − 1
qk − 1

Aq(n− 1, d, k − 1)

Theorems 5 and 6 may be iterated to give an upper bound forAq(n, d, k).
However, as in the classical case of the Johnson space, the order in which
the two bounds should be iterated in order to get the tightest bound is
unclear. By iterating Theorem 6 with itself, the following bound is estab-
lished in [7, 17].



Theorem 7 ([7, 17]).

Aq(n, d, k) ≤
⌊
qn − 1
qk − 1

⌊
qn−1 − 1
qk−1 − 1

· · ·
⌊
qn−k+d − 1
qd − 1

⌋
· · ·
⌋⌋

.

It is shown in [7] that Theorem 5 improves on the anticode bound.

Ahlswede and Aydinian Bound: Let D be a nonempty subset of
{1, . . . , n} and let C ⊆ Gq(n, k) be a code. If, for all U, V ∈ C, with
U 6= V , we have d(U, V ) ∈ D, then we say that C is a code with distances
in D. The following Lemma is given in [19].

Lemma 1 ( [19]). Let CD ⊆ Gq(n, k) be a code with distances from a
set D. Then, for a nonempty subset B ⊆ Gq(n, k) there exists a code
C∗D(B) ⊆ B with distances from D such that

|C∗D(B)|
|B|

≥ |CD|[
n
k

] ,
where, if |C∗D| = 1, then C∗D is a code with distances from D by convention.

In particular when CD is an (n, d, k)q code and B is an anticode of
maximum distance d−1, then |C∗D(B)| = 1 and Delsarte’s anticode bound
on Gq(n, k) is obtained.

Using Lemma 1 Ahlswede and Aydinian obtain the following bound:

Theorem 8 ([19]). For integers 0 ≤ t ≤ d ≤ k, k − t ≤ m ≤ n,

Aq(n, d, k) ≤
[
n
k

]
Aq(m, d− t, k − t)

t∑
i=0

qi(m−i)
[
m

k − i

][
n−m
i

]
It is shown in [19] that for t = 0 and m = n − 1, Theorem 8 gives
Theorem 5.

3.2 Upper Bounds on Aq(n, d) and AS
q(n, d)

A Simple Bound: The simplest upper bound in Aq(n, d) follows im-
mediately from the observation that every subspace code is a union of
constant-dimension codes, and hence

Aq(n, d) ≤
n∑
k=0

Aq(n, d, k)



Etzion-Vardy LP Bound: Etzion and Vardy derive in [17] the following
linear programming bound for AS

q (n, 3).

Theorem 9 ([17]). Let f∗ = max(
n∑
i=0

Di) subject to the following linear

constraints:

qn−i+1 − 1
q − 1

Di−1 +Di +
qi+1 − 1
q − 1

Di+1 ≤
[
n

i

]
(9)

and Di ≤ Aq(n, 2, i), for all i = 0, 1, · · · , n, where D−1 = Dn+1 = 0 by
convention. Then

AS
q (n, 3) ≤ f∗.

Ahlswede-Aydinian LP Bound: Ahlswede and Aydinian establish the
following linear programming bound for Aq(n, d) in [19].

Theorem 10 ([19]). For integers 1 ≤ d ≤ n
2 , let

f(n, d, q) = max(
n∑
i=0

fi)

subject to the following linear constraints:

fi ∈ N for i = 0, 1, . . . , n.
f0 = fn = 1, fk = fn−k = 0 for k = 1, . . . , d
f−j = fn+j = 0 for j = 1, . . . , d (by convention)

fk +
1

d+ 1

d∑
i=1

(d+ 1− i)
(
fk−i

[
n− k + i

n− k

]
+ fk+i

[
k + i

k

])
≤
[
n

k

]
and,

fk ≤ Aq(n, d+ 1, k) for k = 0, . . . , n.

Then,
Aq(n, d) ≤ f(n, d, q).

3.3 Lower Bounds

In this section, we give the counterparts of the Gilbert-Varshamov lower
bound for Aq(n, d, k), Aq(n, d) and AS

q (n, d). We start with the sizes of
spheres in Pq(n). Recall that the size of a sphere in Gq(n, k) was given in
(7).



For V ∈ Pq(n), let BV (t) , {U ∈ Pq(n) : d(V,U) ≤ t} be the sphere
of radius t centered at V in Pq(n). For any V ∈ Pq(n), the size of BV (t)
can be computed using (3) as [20]

|BV (t)| =
t∑

r=0

qr
2

[
k

r

][
n− k
r

]
+

r∑
j=1

qr(r−j)
([
k

r

][
n− k
r − j

]
+
[
n− k
r

][
k

r − j

])
(10)

where k = dim(V ). Note that the size of a sphere in Pq(n) does not depend
on the specific subspace at its center, but does depend on its dimension.
For convenience, we use the notation Bk(t) , |BV (t)|, where k = dim(V ).

We can also define the analogous concept of a sphere under the sub-
space distance, which is denoted as BS

V (t) for V ∈ Pq(n). It is shown
in [17] that

|BS
V (t)| =

t∑
r=0

r∑
j=0

qj(r−j)
[
n− k
r − j

][
k

j

][
n

k

]
(11)

where k = dim(V ). Similarly as above, we use the notation BS
k (t) ,

|BS
V (t)|.

Let Ω be a general metric space with distance metric denoted by δ.
Let Bα(t) , {β ∈ Ω : δ(α, β) ≤ t} be a sphere of radius t centered at α
in Ω. Every maximal code C of minimum distance d must satisfy∑

c∈C
|Bc(d− 1)| ≥ |Ω|. (12)

Since the size B(t, k) of a sphere BV (t, k) in Gq(n, k) is independent of
V , when Ω is replaced with Gq(n, k) and δ(·, ·) with the injection metric,
(12) results in the following Gilbert-Varshamov bound on Aq(n, d, k).

Theorem 11 ([1]).

Aq(n, d, k) ≥ |Gq(n, k)|
B(d− 1, k)

. (13)

Since by (11), the size of a sphere BV (t) in Pq(n) depends on dim(V ), the
approach of Theorem 11 is not suitable for the derivation of a Gilbert-
Varshamov bound in Pq(n).

As pointed out in [17], the appropriate framework for a Gilbert-
Varshamov bound in spaces where the size of a sphere depends upon the
location of its center is given by Tolhuizen [21]. Let B(t) , 1

|Ω|

∑
α∈Ω
|Bα(t)|

denote the “average size” of a sphere of radius t in Ω. Tolhuizen showed



in [21] that the maximum size of a code C ⊆ Ω of minimum distance

d is at least
|Ω|

B(d− 1)
. Using this result along with (10), Khaleghi and

Kschischang [20] and independently Gadouleau and Yan [14] obtain the
following Gilbert-Varshamov bound for Aq(n, d):

Theorem 12 ([14,20]). Aq(n, d) ≥ |Pq(n)|2
n∑
k=0

[
n

k

]
Bk(d− 1)

.

Earlier, Etzion and Vardy [17] had already established the following
Gilbert-Varshamov bound on AS

q (n, d):

Theorem 13 ([17]). AS
q (n, d) ≥ |Pq(n)|2

n∑
k=0

[
n

k

]
BS
k (d− 1)

where BS
k (d− 1) is given by (11).

Unlike the case of classical coding theory in the Hamming metric, the
best lower bounds on Aq(n, d) and Aq(n, k, k) result from code construc-
tions, the subject of the next section.

4 Constructions

4.1 Lifted Rank-Metric Codes

In this section, we describe the simplest construction of asymptotically
good subspace codes, which uses rank-metric codes as building blocks.
This construction was first proposed in [6], and then rediscovered in [1]
for the special case where the rank-metric code is a Gabidulin code.
The construction was later explained in [3, 22] in the context of the sub-
space/injection distance. The latter description is reviewed below.

For a matrixX ∈ Fk×mq , let the subspace Λ(X) ,
〈[
Ik×k X

]〉
∈ Gq(k+

m, k) be called the lifting of X. Similarly, for a matrix code C ⊆ Fk×mq ,
let the subspace code Λ(C) , {Λ(X), X ∈ C} be called the lifting of C.
Since every subspace corresponds to a unique matrix in RREF, we have
that the mapping X → Λ(X) is injective, and therefore |Λ(C)| = |C|. Note
that Λ(C) is a constant-dimension code, i.e., Λ(C) ⊆ Gq(k +m, k).



Lemma 2 (Lifting Lemma [3]). For all X,X ′ ∈ Fk×mq and all C ⊆
Fk×mq ,

d(Λ(X), Λ(X ′)) = dR(X,X ′),
d(Λ(C)) = dR(C).

Proof. We have

d(Λ(X), Λ(X ′)) = dim(Λ(X) + Λ(X ′))−min{dim(Λ(X)), dim(Λ(X ′))}

= rank

[
I X
I X ′

]
− k

= rank

[
I X
0 X ′ −X

]
− k

= rank(X ′ −X).

The second statement immediately follows from the first.

Lemma 2 shows that a subspace code constructed by lifting inherits
the distance properties of its underlying rank-metric code.

In particular, let C ⊆ Fk×(n−k)
q be an MRD code with dR(C) = d and,

without loss of generality, let k ≤ n − k. Then Λ(C) is an (n, d, k) code
with cardinality

|Λ(C)| = q(n−k)(k−d+1). (14)

Note that (14) gives a lower bound on Aq(n, d, k). Comparing with the
upper bound of (8), we see that the ratio of the upper and lower bounds is
a constant depending only on q, thus demonstrating that this construction
yields asymptotically optimal codes.

Optimizing k in (14), we obtain

Aq(n, d) ≥ qd
n
2
e(bn

2
c−d+1).

We now mention a particular way of constructing lifted rank-metric
codes. When m ≥ 2k it is convenient to construct an MRD code C ⊆ Fk×mq

as a Cartesian product of simpler MRD codes. Let m1, . . . ,mr ≥ k be
such that

∑r
i=1mi = m, and let Ci ⊆ Fk×mi

q , i = 1, . . . , r, be MRD codes
with minimum rank distance d. Then, it is easy to see that the Cartesian
product C = C1×· · ·×Cr is also an MRD code with dR(C) = d, where a spe-
cific element (X1, . . . , Xr) in the Cartesian product is interpreted as the
k ×m matrix [X1 X2 · · · Xr]. Clearly, we have |C| =

∏r
i=1 q

mi(k−d+1) =
qm(k−d+1). Note the importance of choosing mi ≥ k for the resulting code
to be MRD. Now, since dR(C) = d, it follows that Λ(C) is a (k+m, k, d)q
code.



4.2 Padded Codes

Padded codes are a set of subspace codes in Gq(n, k) obtained as a union
of lifted product rank-metric codes. Let n = (r + 1)k + s, where r, s ∈ N
and s < k. Let C ⊆ Fk×kq , and C′ ⊆ Fk×(k+s)

q be rank-metric codes of

minimum rank-distance d. Define a padded code as Ω =
r−1⋃
i=0

Ωi, where

Ωi = {〈[
i︷ ︸︸ ︷

0k×k · · ·0k×k Ik×k ci+1 · · · cr]〉}

with cj ∈ C for j = 1, · · · r − 1, and cr ∈ C′.
It is clear that d(Ωi) = d. Now, let j < i ≤ r − 1, and consider U =

〈X〉 ∈ Ωi and V = 〈Y 〉 ∈ Ωj , where X = [
i︷ ︸︸ ︷

0k×k · · ·0k×k Ik×k ci+1 · · · cr]

and Y = [

j︷ ︸︸ ︷
0k×k · · ·0k×k Ik×k ci+1 · · · cr]. Since j < i, Ik×k in X and Y are

not aligned. Therefore,

dim(U + V ) = rank

[
X
Y

]
= 2k,

and d(U, V ) = dim(U + V )− k = k ≥ d. Thus we obtain d(Ω) = d.
When C = C′ are Gabidulin codes, we obtain a special case of the

construction in [23]. If in addition dR(C) = k, then the construction above
results in the “spread codes” of [24] and [25].

4.3 Lifted FD Codes

In [26], Etzion and Silberstein provide a multi-level construction for codes
in Pq(n). The basic idea of this construction is to generalize the lifting
construction to Schubert cells (as defined in Section 2) so that a lifted
rank-metric code is contained completely within any given cell. A code
can then be constructed by taking a union of such lifted rank-metric
codes in suitably well-separated Schubert cells. We now give a detailed
description of this construction.

For a subspace V ∈ Pq(n) and a nonsingular matrix T ∈ Fn×nq , define
V T , {vT, v ∈ V } (which is a subspace isomorphic to V ). Given any
binary vector b of length n and weight k, define P (b) as the n×n permu-
tation matrix such that P (b)supp(b) =

[
Ik×k 0k×(n−k)

]
and P (b)supp(b̄) =[

0(n−k)×k I(n−k)×(n−k)

]
. Multiplication of a matrix

[
X Y

]
, where X is



k × k and Y is k × (n− k), by P (b)−1 on the right results in a matrix in
which the columns are permuted. Specifically, the columns of X appear
in columns indexed by supp(b), and columns of Y appear in columns in-
dexed by supp(b̄), and the order of the columns within each submatrix is
preserved.

Now, let b be a binary vector of length n and weight k. For a matrix
X ∈ Fk×(n−k)

q , define the generalized lifting, Λb(X), of X with respect to
b as

Λb(X) , Λ(X)P (b)−1 =
〈[
I X

]
P (b)−1

〉
.

Since rank
([
I X

]
P (b)−1

)
= k, we observe that Λb(X) is a k-dimensional

subspace of Fnq . Similarly, for a matrix code C ⊆ Fk×(n−k)
q , let

Λb(C) , {Λb(c), c ∈ C}.

Note that the lifting Λ(·) defined in Section 4.1 is a special case of Λb(·),
namely, Λ(X) = Λb(X) where b = (1, . . . , 1, 0, . . . , 0).

The generalized lifting of a matrix code does not generally lead to a
subspace code confined to a single Schubert cell. However, if the matrix
code is suitably constrained in a manner depending on b, then its image
will indeed be confined to the Schubert cell Sq(b) corresponding to b. The
particular constraints are described as follows.

Let Q = [Qij ] be the n × n upper triangular matrix with Qij = 1 if
j ≥ i and Qij = 0 otherwise. Given a binary profile vector b of length n
and weight k, regarded as an element of Z1×n, define the vector c(b) ∈
Z1×n via

c(b) , bQP (b).

Then, the generalized lifting Λb(X) of a matrix X = [xij ] ∈ Fk×(n−k)
q is

guaranteed to be in the Schubert cell corresponding to b provided that

for 1 ≤ i ≤ k, 1 ≤ j ≤ n− k, i > c(b)j+k implies that xij = 0. (15)

For example, suppose n = 8 and k = 3, and let b = (0, 0, 1, 0, 1, 0, 0, 1).
Then,

P (b) =



0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0


and c(b) = (1, 2, 3, 0, 0, 1, 2, 2).



Let X ∈ F3×5
q = [xij ]. Observe that

[
I X

]
P (b)−1 =

x11 x12 1 x13 0 x14 x15 0
x21 x22 0 x23 1 x24 x25 0
x31 x32 0 x33 0 x34 x35 1

 .
Clearly this matrix is in RREF and hence prof(

[
I X

]
P (b)−1) = b if

x11 = x21 = x31 = x12 = x22 = x32 = x23 = x33 = x34 = x35 = 0.

These conditions are precisely those implied by (15).
Now let b be a binary vector of length n and weight k. Let C ⊆

Fk×(n−k)
q be a rank-metric code with dR(C) = d in which each code-

word satisfies (15). We refer to such a code as an FD(b) code, where FD
stands for “Ferrers’ Diagram” [26]. Clearly, Λb(C) consists of subspaces
in the Schubert-cell corresponding to b, and by Lemma 2 we have that
d(Λb(C)) = d, and dS(Λb(C)) = 2d. The code Λb(C) is referred to as a
lifted FD(b) code.

In [20, 27] a construction for FD(b) codes is presented, where a code
Cb is obtained as a subcode of a linear MRD code with a further set of
linear constraints ensuring that each codeword in Cb satisfies (15). The
following theorem gives a lower bound on the cardinality of these codes.

Theorem 14 ([20, 27]). For a binary vector b of length n with wt(b) =
k > 0, let Cb be an FD(b) code of minimum rank-distance d, obtained via
the construction presented in [20, 27]. We have

|Cb| ≥ qw(b)−max{µ(b),η(b)}(d−1),

where w(b) =
∑

i>k c(b)i, µ(b) = max{c(b)i : i > k} and η(b) = wt(c(b))−
k.

We now consider the minimum distance between elements in distinct
Schubert cells. Let u and v be two distinct binary vectors of length n
and having weights k and k′ respectively, and let u∧ v denote the logical
and of u and v, i.e., the binary vector in which (u ∧ v)i = uivi. Let U
and V be arbitrary vector spaces in the Schubert cells Sq(u) and Sq(v),
respectively. The following lower bound on d(U, V ) is given in [20]:

Theorem 15 ([20]). d(U, V ) ≥ da(u, v), where da(u, v) = max{wt(u),wt(v)}−
wt(u∧ v) is a metric known as the asymmetric distance between u and v.



Proof. Clearly dim(U) = wt(u) and dim(V ) = wt(v). Let w = u ∧ v and
observe that dim(U ∩ V ) ≤ wt(w). Thus,

dim(U)− dim(U ∩ V ) ≥ wt(u)− wt(w).

Similarly,
dim(V )− dim(U ∩ V ) ≥ wt(v)− wt(w).

Taking the max{·, ·} of both equations we obtain

d(U, V ) ≥ max{wt(u),wt(v)} − wt(w)
= da(u, v).

Earlier, Etzion and Silberstein [26] had given the following theorem:

Theorem 16 ([26]). dS(U, V ) ≥ dH(u, v)

Proof. Let N(u, v) = wt(u) − wt(v), and N(v, u) = wt(v) − wt(u). In a
manner similar to the proof of Theorem 15 we have,

N(u, v) = wt(u)− wt(w)
= dim(U)− wt(w)
≤ dim(U)− dim(U ∩ V )

Similarly N(v, u) ≤ dim(V )− dim(U ∩ V ), thus we have

dH(u, v) = N(u, v) +N(v, u) ≤ dim(U) + dim(V )− 2 dim(U ∩ V ) = dS(U, V ).

Note that both lower bounds are achieved with equality when U and
V correspond to lifted all-zero codewords.

Finally let A be a binary code of length n. For every element b ∈ A,
let Cb be a FD(b) code. Then

Ω =
⋃
b∈A

Λb(Cb)

is a subspace code.
If A has minimum asymmetric distance d and each FD(b) code is

designed to have minimum rank-distance d, then Ω is guaranteed to have
minimum injection distance d. Similarly, if A has minimum Hamming
distance 2d and each FD(b) code is designed to have minimum rank-
distance d, then Ω is guaranteed to have minimum subspace distance 2d.
These codes are the lifted Ferrer’s diagram rank-metric codes of [20, 26]



designed for the injection and subspace distance respectively. We refer to
such codes as lifted FD codes.

It is interesting to observe that this construction included the padded
codes of Section 4.2 as a special case. In particular, let P ⊆ {0, 1}n be a
set of constant-weight binary vectors of weight k ≤ n such that,

for all v ∈ P, v = (
i︷ ︸︸ ︷

0, 0, · · · , 0
k︷ ︸︸ ︷

1, 1, · · · , 1
n−k−i︷ ︸︸ ︷

0, 0, · · · , 0).

Let C ⊆ Fk×kq be a rank-metric code of minimum rank-distance d. Then
{Λv(C) : v ∈ P} is a padded code in Gq(n, k) with minimum injection
distance d.

Notice that in this construction a naive choice for A would be one
with a high information rate. However, a high information rate would
only result in a large number of selected Schubert cells, and does not
necessarily guarantee a high overall rate for the resulting (n, d)q code.
This is due to the fact that the rate of a lifted FD code depends on the
rate of its underlying FD(b) codes, which in turn by Theorem 14 depend
on the particular choices of b.

In [26] constant-weight lexicodes are used to select well-separated
Schubert cells in the Grassmannian. In [20, 27] a scoring function is de-
fined, which given a minimum distance d, calculates for every b ∈ {0, 1}n
the bound of Theorem 14. In order to constructA, a standard greedy algo-
rithm is used that maintains a list of available profile vectors A ⊆ {0, 1}n,
(with A initialized to {0, 1}n). At each step an available vector with the
highest score is added to A, and vectors within asymmetric distance d
of b are made unavailable. The algorithm proceeds until A = ∅. Results
obtained from this algorithm are tabulated in [27].

4.4 Codes Obtained by Integer Linear Programming

In [28] Kohnert and Kurtz view the construction of constant-dimension
subspace codes as an optimization problem involving integer variables.

Let C be an (n, d, k)q code so that for all U, V ∈ C we have d(U, V ) =
k − dim(U ∩ V ) ≥ d. The code construction problem is equivalent to
finding a set of N subspaces C = {V1, V2, · · · , VN} ∈ Gq(n, k) such that
for all i, j ∈ {1, 2, · · ·N}, Vi, Vj ∈ C, we have dim(Vi ∩ Vj) ≤ k − d. This
means that no pair of subspaces in C intersect in a (k − d + 1)-space in

Pq(n). Let M ∈ F[ n
k−d+1]×[nk]

2 be an incidence matrix defined as follows:

MW,V :=
{

1 if W ⊆ V,
0 otherwise.



Let x be a binary vector of length
[
n
k

]
. The code construction problem

may be viewed as the following optimization problem:

maximize
[nk]∑
i=1

xi, subject to Mx ≤

1
...
1

 .

Let S be an ordered set obtained by taking the subspaces in Gq(n, k) in
some arbitrary order. Then, if x is the solution to the above optimization
problem, we may construct a subspace code C ⊆ Gq(n, k) of minimum
distance d, by taking the subspaces in S indexed by supp(x).

It is possible to significantly reduce the size of the problem by prescrib-
ing a group of automorphisms for the code, and then using the induced
symmetry to reduce the number of equations. See [28] for details.

5 Encoding and Decoding

Let Ω ∈ Pq(n) be a subspace code with d(Ω) = d. Throughout this
section, let t = b(d − 1)/2c. In this section, we consider two problems
related to the use of Ω for error control in noncoherent linear network
coding. The encoding problem is how to efficiently map an integer in
{0, . . . , |Ω| − 1} into a codeword of Ω (and back). The decoding problem
is how to efficiently find a codeword of Ω that is closest (in injection
distance) to a given subspace U ∈ Pq(n). More specifically, we focus on
a bounded-distance decoder, which returns a codeword V ∈ Ω if V is the
unique codeword that satisfies d(V,U) ≤ t and returns a failure otherwise.

5.1 Encoding Lifted FD Codes

Let Ω =
⋃
b∈A

Λb(Cb) be an (n, d)q lifted FD-code constructed as described

in Section 4.3, and suppose that A is given {b1, b2, . . . , b|A|}. Let c1 = 0,
and, for 2 ≤ i ≤ |A|, let ci =

∑i−1
j=1 |Cbi |.

Codewords are numbered starting at zero. To map an integer m in the
range {0, . . . , |Ω|−1} to a codeword: (a) find the largest index i such that
ci ≤ m, (b) map the integer m− i to a codeword of Cbi (using an encoder
for the corresponding rank-metric code), which can then be lifted to the
corresponding subspace. Note that 0 ≤ mi < |Cbi |. Conversely, the jth
codeword of Cbi maps back to the message m = ci + j. Assuming efficient
encoding of the underlying rank-metric codes, the main complexity of the
encoding algorithm, given m, is to determine the corresponding ci, which
can be done using a binary search in time at worst proportional to log |A|.



5.2 Decoding Lifted Gabidulin Codes

Let C ⊆ Fk×mq be a Gabidulin code with dR(C) = d. Recall that Λ(C) is a
(k +m, d, k)q code.

A bounded-distance decoder for Λ(C) is a function dec : Pq(n)→ C ∪
{ε} such that dec(U) = c for all U ∈ BΛ(c)(t) and all c ∈ C, and such that
dec(U) = ε for all other U .

Let us first point out that decoding of Λ(C) is not a straightforward
application of rank-distance decoding. To see this, let A ∈ F`×kq , y ∈
F`×(n−k)
q and Y =

[
A y
]

be such that 〈Y 〉 = U is the received subspace.
If ` = k and A is nonsingular, then

d(Λ(c), U) = dR(c, A−1y)

and therefore decoding of Ω reduces to rank-distance decoding of C. In
general, however, A may not be invertible, in which case the argument
above does not hold.

Several algorithms have been proposed for implementing the function
dec(·). The first such algorithm was proposed by Kötter and Kschischang
in [1] and is a version of Sudan’s “list-of-1” decoding for Gabidulin codes.
The time complexity of the algorithm is O((k+m)2m2) operations in Fq.
A faster algorithm was proposed in [3] which is a generalization of the
standard (“time-domain”) decoding algorithm for Gabidulin codes. The
complexity of this algorithm is O(dm3) operations in Fq. As shown in [29],
the algorithm in [3] can significantly benefit from the use of optimal (or
low-complexity) normal bases, further reducing the decoding complexity
to (11t2 + 13t + m)m2/2 multiplications in Fq (and a similar number of
additions). Finally, a transform-domain decoding algorithm was proposed
in [22,29], which is slightly faster than that of [3] for low-rate codes.

As we will see, a bounded-distance decoder for a lifted Gabidulin
code can be used as a black box for decoding many other subspace codes.
For instance, consider Cr = C × · · · × C, the rth Cartesian power of a
Gabidulin code C ⊆ Fk×mq . Recall that Λ(Cr) is a (k + rm, d, k)q code,
where d = dR(C). Let dec(·) be a bounded-distance decoder for Λ(C).
Then a bounded-distance decoder for Λ(Cr) can be obtained as the map
Pq(k + rm)→ Cr ∪ {ε} given by

U 7→

{[
ĉ1 · · · ĉr

]
= ĉ if ĉi 6= ε, i = 1, . . . , r, and d(Λ(ĉ), U) ≤ t

ε otherwise

where ĉi = dec(
〈[
A yi

]〉
), i = 1, . . . , r, and A ∈ F`×kq and y1, . . . , yr ∈

F`×mq are such that
〈[
A y1 · · · yr

]〉
= U . In other words, we can decode



Λ(Cr) by decoding each Cartesian component individually (using the same
matrix A on the left) and then checking whether the resulting subspace
codeword is within the bounded distance from U .

5.3 Decoding Lifted FD Codes

Let A be a binary code with da(A) ≥ d. For all b ∈ A, let Cb be a b-FD
code with dR(Cb) ≥ d. Let

Ω =
⋃
b∈A

Λb(Cb).

Recall that Ω is an (n, d)q code.
A bounded-distance decoder for Ω is a function dec : Pq(n) → (A ×

∪b∈B Cb) ∪ {ε} such that dec(U) = (b, c) for all U ∈ BΛb(c)(t), all c ∈ Cb,
and all b ∈ A, and such that dec(U) = ε for all other U .

We will show that we can efficiently decode Ω, provided that we have
efficient decoders for A and for each Cb, b ∈ A. The basic procedure was
proposed in [26] for the decoding in the subspace metric. Here we adapt
it for the injection metric.

Let us first consider the decoding of Λb(Cb), for some b ∈ A. Let
c ∈ Cb and U ∈ Pq(n). Recall that Λb(c) = Λ(c)P (b)−1. Since P (b) is
a nonsingular linear transformation, and therefore preserves dimensions,
we have

d(Λb(c), U) = d(Λb(c)P (b), UP (b)) = d(Λ(c), UP (b)).

It follows that bounded-distance decoding of Λb(Cb) can be performed by
first computing ĉ = dec(UP (b)), and then returning (b, ĉ) unless ĉ = ε.

Now, consider the decoding ofΩ. Let U ∈ Pq(n) be such that d(V,U) ≤
t, for some (unique) V ∈ Ω. The first step is to compute the profile vec-
tor b corresponding to the Schubert cell containing V . Let b′ denote the
profile vector corresponding to the Schubert cell containing U . Since by
Theorem 15

da(b, b′) ≤ d(V,U) ≤ t,

it follows that b can be found by inputting b′ to a bounded-asymmetric-
distance decoder for A. Then the actual c ∈ Cb such that V = Λb(c) can
be found by using the decoder for Cb described above.



6 Conclusions and Open Questions

Subspace codes represent an intriguing domain in which to carry out basic
investigations of coding theory.

From a practical standpoint, at least for applications in network cod-
ing, the main problems appear to be solved, as constant-dimension lifted
rank-metric codes contain close to the maximum possible number of code-
words (at least on a logarithmic scale), and efficient encoding and de-
coding algorithms have been developed. It is unlikely that codes with
marginally larger codebooks (even though they exist) will justify the ad-
ditional complexity needed to process them.

From a mathematical standpoint, however, much remains open. For
example, what are the optimal codes of minimum distance 2 or 3? Can ex-
isting constructions be improved? For example, the construction of lifted
FD codes, which relies on a partitioning of Pq(n) into Schubert cells, can
be regarded as a form of generalized concatenation. Are there other parti-
tioning schemes that, for example, result in subsets of increasing minimum
distance? Are there interesting subspace codes that can be constructed
as orbits of a group action on vector spaces? Finally, are there additional
applications of subspace codes beyond those of network coding and linear
authentication?
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