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Abstract

Characterising the dependence between extremes of wave spectral parameters such as significant wave
height (HS) and spectral peak period (TP ) is important in understanding extreme ocean environments
and in the design and assessment of marine structures. For example, it is known that mean values of wave
periods tend to increase with increasing storm intensity. Here we seek to characterise joint dependence
in a straight forward manner, accessible to the ocean engineering community, using a statistically sound
approach.

Many methods of multivariate extreme value analyses are based on models which assume implicitly
that in some joint tail region each parameter is either independent of or asymptotically dependent on
other parameters; yet in reality the dependence structure in general is neither of these. The underpinning
assumption of multivariate regular variation restricts these methods to estimation of joint regions in which
all parameters are extreme; but regions where only a subset of parameters are extreme can be equally
important for design. The conditional approach of Heffernan and Tawn [2004], similar in spirit to that
of Haver [1985] but with better theoretical foundation, overcomes these difficulties.

We use the conditional approach to characterise the dependence structure of HS and TP . The key
elements of the procedure are: (1) marginal modelling for all parameters, (2) transformation of data
to a common standard Gumbel marginal form, (3) modelling dependence between data for extremes of
pairs of parameters using a form of regression, (4) simulation of long return periods to estimate joint
extremes. We demonstrate the approach in application to measured and hindcast data from the Northern
North Sea, the Gulf of Mexico and the North West Shelf of Australia. We also illustrate the use of data
re-sampling techniques such as bootstrapping to estimate the uncertainty in marginal and dependence
models and accommodate this uncertainty in extreme quantile estimation.

We discuss the current approach in the context of other approaches to multivariate extreme value
estimation popular in the ocean engineering community.

1 Introduction

Careful statistical description is important to understanding of extreme ocean environments, and design and
assessment of ocean structures. Wave climate can be described in terms of sea-state variables such as the
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significant wave height, HS , and spectral peak wave period, TP , or mean zero up-crossing wave period, TZ , for
example. These and other variables together characterise statistical properties of wave climate. Spectra for
an extreme sea state, such as the 100-year return-period sea state are often required for assessing dynamic
loads. We estimate spectral properties of extreme sea states by jointly estimating values of HS and TP
corresponding to a given return period. If these variables were independent (or effectively so), this procedure
would be relatively straight forward - but this is usually not the case. In general, estimation of extreme
wave climate conditions requires that dependence between different variables be characterised adequately.
Suppose we wish to model extremes of a sample of values drawn from some multivariate distribution. To
achieve this we need to estimate the tail behaviour of the multivariate distribution from which the sample
is drawn, based on the sample alone. To simplify presentation of mathematical formulae in what follows,
we consider modelling extremes of a bivariate random variable (X,Y ) (corresponding to (HS , TP ), e.g.), but
note that ideas discussed are applicable in higher dimensions. We also assume that marginal distributions of
individual variables have been transformed to Gumbel scale (by means of the probability integral transform,
see section 3).

A popular approach is to assume multivariate regular variation in Frechet margins (see the Appendix).
An important property of the tail of the distribution, applicable for a wide range of multivariate extreme
value distributions (but not all, see e.g. Schlather 2001), is its coefficient of tail dependence, η, a constant
∈ (0, 1], which quantifies the extent of extremal dependence for the distribution. For the bivariate random
variable (X,Y) with Gumbel marginals, and large values (x, y) of (X,Y ) we have (from the Appendix and
Ledford and Tawn 1996):

Pr(X > x+ t, Y > y + t) ≈ exp(−t/η)Pr(X > x, Y > y) for fixed t > 0 (1)

The value of η is fixed for a given distribution, sometimes a function of the parameters of that distribu-
tion. When η=1 we say that the distribution is asymptotically dependent. Otherwise, it is asymptotically
independent. A number of distributions appropriate for modelling extremes of multivariate samples has been
proposed, each with its own parameters and value for η in particular. Modelling our sample therefore requires
(1) fitting our distribution of choice, (2) estimating its parameters and η, and (3) confirming goodness of
model fit, and various modelling assumptions made, using diagnostic tests. Numerous authors (e.g. Reiss
and Thomas 2001), Ledford and Tawn [1996], Ledford and Tawn [2003]) have shown that this approach is
adequate for many applications in low dimensions. The approach is valid when the distributional form is
chosen appropriately. However, it is often difficult to decide between one of a number of different parametric
forms (with possibly different extremal dependence structures). Some authors, especially in the engineering
literature, neglect to estimate the coefficient of tail dependence.

In the ocean engineering literature, Ferreira and Guedes-Soares [2002] present a method to estimate
bivariate distributions of significant wave height, HS and mean wave period, TZ . The method consists of
(1) transforming individual variables using the Box-Cox transformation so that, marginally, transformed
values are consistent with samples from a normal distribution, (2) fitting a bivariate Normal model to
transformed data. The approach is illustrated in application to modelling of Waverider buoy data at Figuera
da Foz, Portugal. The approach will be appropriate for modelling the body of a bivariate distribution,
provided that Box-Cox transformations provide favourable results. However, the method imposes a particular
structure to extreme tail behaviour which may not be supported by the sample. In a similar vain, methods
of (multivariate) kernel density estimation, appropriate for modelling the body of a distribution, impose the
kernel structure on extreme tails also with little or no justification.

There are short-comings to direct fitting of multivariate extreme value distributions. Firstly, the approach
is not suitable for samples which are not simultaneously extreme in all their components, since the set
(X > x+ t, Y > y+ t) (in Equation 1) is likely to be empty if (X > x, Y > y) is not. Secondly, the approach
becomes unmanageable when dimensionality of data increases. For example, we might wish to jointly model
extremes of wave spectral parameters (HS , TP ) over 1000 locations, requiring a 2000-dimensional model,
which would not easily be estimated without making simplifying assumptions. Other authors have taken a
different, conditional, approach, the basis of which is to take each variable in turn as a conditioning variate,
and model remaining variables conditional on a large value of the conditioning variate. In our bivariate case
we might model Y |X = x for large x, and X|Y = y for large y. The advantage of this approach is that
it extends in principle to higher dimensions, and to samples for which not all variables are simultaneously
extreme. A disadvantage until recently, was that the form of the conditional model had to be assumed (or
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itself estimated) from the sample. For example, Haver [1985] proposed a model for extremes of (HS , TP )
data, based on (1) modelling the extreme tail of HS using a Weibull form, (2) modelling the distribution
of TP , for a given (range of) HS using a log-normal form, (3) estimating values for the parameters in the
log-normal distribution for TP |HS = h corresponding to extreme values h (beyond the sample) by regressing
the log-normal parameter estimates on HS for the sample and extrapolating, and hence estimating extreme
quantiles of (HS , TP ). Justification for the choice of log-normal conditional model, and for the forms of
models for log-normal parameters as a function of HS was goodness of fit to the sample; these may not be
adequate when extrapolating beyond the sample.

The conditional approach of Heffernan and Tawn [2004] (henceforth the conditional model) goes some
way to overcoming these difficulties. Based on asymptotic arguments, they derive a parametric equation for
the form for one variable conditional on a large value of another, valid for extremes from a wide class of
multivariate distributions with Gumbel marginals. The conditional approach consists of (1) transforming
each variable so that marginally its values are consistent with a sample from the standard Gumbel distribu-
tion, (2) estimating the parameters of the parametric model for values of one variable conditional on large
values of the other, (3) simulating (and back-transforming) to characterise extremal behaviour of the joint
distribution (on the original scale). The major advantage of the Heffernan and Tawn conditional approach
compared with previous conditional models, is that the functional forms for marginal fitting and conditional
modelling are motivated by asymptotic arguments. Note also that there no need to estimate the coefficient
of tail dependence.

The paper is structured as follows. In Section 2 we introduce four applications motivating current
work. In Section 3 we present an overview of the conditional model, and evaluate its performance on
simulated examples in Section 4. We turn to analysis of the four applications in Section 5. Conclusions and
recommendations are given in Section 6. An appendix provides an informal overiew of some concepts from
multivariate extreme value analysis assuming multivariate regular variation.

2 Motivating applications

We motivate current work by considering applications to estimation of extreme values of HS and TP at a
location in the Northern North Sea (NNS) for which both measured and hindcast data are available, to
buoy data from a location in the Gulf of Mexico (GoM), and to hindcast data on the North West Shelf
(NWS) of Australia. Data correspond to storm peak values for HS over threshold, observed during periods
of storm events, and corresponding values for TP throughout unless stated otherwise. For the measured
NNS example, illustrated in Figure 1, the sample corresponds to 620 storm peak pairs for the period (March
1973, December 2006) measured using a laser device. Hindcast data for the same NNS location (see Figure
2) corresponds to 827 pairs of values for the period (November 1964, April 1998). GoM data in Figure 3
are National Data Buoy Center measurements from buoy 42002 corresponding to 505 pairs for the period
(January 1980, December 2007). Finally, NWS hindcast data (shown in Figure 4) correspond to 145 pairs
of storm peak values for the period (February 1970, April 2006). All samples exhibit positive dependence
between HS and TP .

The four application data sets are chosen to illustrate use of the conditional model, not for development
of design criteria. In general, sample sizes are only of the order of 30 years in length, and data include strong
covariate effects due, for example, to seasonality. No attempt has been made at this point to accommodate
these effects in the analysis. Accordingly, the results shown in section 5 are not intended to be valid estimates
of design criteria for those locations.

Distributions of threshold exceedences of storm peak HS and TP are consistent with random samples
from Generalised Pareto (GP) distribution (see Section 3 below). For example, goodness of fit of the GP
distribution, to values of storm peak HS and TP respectively for the measured NNS sample is illustrated as
a quantile-quantile plot in Figures 5 and 6. The marginal extremal behaviour of storm peak TP is of course
not generally of interest for engineering purposes, but it is important to establish its conformance to GP for
the present application. Fits to other samples are of comparable quality. In estimating the GP model, it is
important to explore the stability of estimated GP shape and scale parameters as a function of threshold;
this is illustrated in Figures 7 and 8 for the measured NNS sample. It can be seen that the GP shape and
scale parameters are more stable with respect to threshold for HS than for TP in this case. A threshold
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corresponding to a non-exceedence probability in the region of 0.6 was used for marginal modelling for all
samples, notwithstanding the fact that threshold selection is a non-trivial step in general. In Figures 7 and
8, there is more variation of estimated GP shape and scale for TP than for storm peak HS . Note however
that ξ̂ and β̂ estimates from generalised Pareto fitting are (asymptotically) negatively correlated, so that

an increasing ξ̂ is balanced by a reducing β̂, e.g. We often observe that variability in an estimated extreme
quantile, such as the most probable 100-year storm peak HS , is smaller than variability in ξ̂ and β̂.

3 Outline of the conditional model

For pairs (X,Y ) of random variables with marginal Gumbel distributions, Heffernan and Tawn [2004] derive
a parametric form for the conditional distribution of one variable given a large value of the other. This
parametric form, motivated by the assumption of a particular limit representation for the conditional dis-
tribution (see Equation 3 in Section 6) is appropriate to characterise the conditional behaviour of a wide
range of theoretical examples of bivariate (and higher-dimensional) distributions for extremes. Model form
for positively associated pairs of variables (X,Y ) takes a particularly simple form:

(Y |X = x) = ax+ xbZ (2)

where a and b are location and scale parameters respectively to be estimated, with a ∈ [0, 1] and b ∈
(−∞, 1), and x is large. Z is a random variable, independent of X, converging with increasing x to a non-
degenerate limiting distribution G. Joint tail behaviour is then characterised by a, b and G. The form of
distribution G is not specified by theory. The assumption of multivariate regular variation is not necessary.

For a sample {xi, yi}ni=1 of values from (X,Y ) with values of X exceeding an appropriate threshold u,
the values of a, b and G are estimated using regression. For simplicity and computational ease during model
fitting, G is assumed to be a Gaussian distribution with mean µZ and variance σ2

Z treated as nuisance
parameters. Fitted values:

ẑi =
(yi − âxi)

xb̂i
, i = 1, 2, 3, ..., n

are used to estimate distribution G, and the estimate Ĝ is then sampled in subsequent simulations. The
adequacy of model fit can be assessed by (1) demonstrating that the values {ẑi}ni=1 and {xi}ni=1 are not

obviously dependent (thus violating a modelling assumption), (2) exploring the effect of varying u on â, b̂
and subsequent estimates (e.g. of probabilities associated with extreme sets), and (3) bootstrap resampling
to estimate the uncertainty of estimates for a, b and subsequent estimates for a given threshold choice.

The Generalised Pareto (GP) form is appropriate for model marginal distributions of peaks over threshold,
rather than the Gumbel distribution. Therefore, in such cases, to use the conditional model above we
transform original variables (X∗, Y ∗) from GP to Gumbel using the probability integral transform as follows.
Suppose we fit the GP distribution (to the sample from X∗ without loss of generality):

FGP (x; ξ, β, u) = 1− (1 + ξ
β (x− u))

− 1
ξ

+

and estimate cumulative probabilities {FGP (x∗i ; ξ̂, β̂, u)}ni=1. Now the standard Gumbel distribution has
cumulative distribution function:

FG(x) = exp(− exp(−x))

Thus if we define the transformed sample {xi}ni=1 such that FG(xi) = FGP (x∗i ; ξ̂, β̂, u) or:

xi = − log(− log(FGP (x∗i ; ξ̂, β̂, u))) for i = 1, 2, 3, ..., n

the transformed sample will be consistent with a sample from a Gumbel distribution. Similarly, given
a value of x (of Gumbel variate), we can calculate the corresponding value x∗ on the original GP scale.
It is essential to demonstrate the adequacy of GP marginal fits, e.g. by using the mean residual life plot
and stability of marginal shape parameter as a function of threshold choice. Finally, to simulate a random
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drawing from the conditional distribution Y |X > u, the following procedure can then be followed: (1) draw
a value x of X at random from its standard Gumbel distribution, given that the value exceeds threshold u

(2) draw a value of z of Z at random from the set {ẑi}ni=1 (3) calculate that value of y|x = âx + xb̂z (4)
transform (x, y) to (x∗, y∗) using the probability integral transform and the estimated GP marginal model
parameters

Using simulation, estimates for various extremal statistics (e.g. values associated with long return periods)
can be obtained routinely.

4 Evaluation of conditional model

A comprehensive demonstration of conditional model performance has been provided in Heffernan and
Tawn [2004], for both simultaneous and non-simultaneous bivariate extremes from various distributions, and
different degrees of tail dependence. The conditional model performs at least as well in general as direct
fitting of a multivariate extreme value distribution, especially when the coefficient of tail dependence is not
explicitly estimated. Here, we evaluate model performance in application of bivariate samples from four
bivariate distributions, and compare performance with that of a variant of the approach proposed by Haver
(1985). Readers primarily interested in applications of the conditional model may choose only to browse this
section at first reading.

Distributions considered

We perform simulation using the following four distributions, selected since they exhibit different tail depen-
dence which we anticipate observing in oceanographic applications:

Distribution D1. EVEL: Multivariate extreme value distribution with exchangeable logistic dependence

Pr(X < x, Y < y) = exp(−(exp(−x/α) + exp(−y/α))α)

where X and Y have standard Gumbel marginals. Conditionally, Pr(Y < y|X = x) can be written
in closed form. Simulations from this bivariate distribution are straight forward by first simulating one
variate from its marginal distribution and subsequently simulating the second variate from the conditional
distribution given the value of the first variate. X and Y are dependent (unless α=1). The coefficient of
tail dependence, η, is unity (for α < 1), so that this distribution is asymptotically dependent. Conditionally,
(Y |X = x) = x+Z for sufficiently large x (see Smith 1992), so this distribution is asymptotically conditionally
dependent (since Y |X = x depends on x for large x). The value of α (α < 1) has no effect on the asymptotic
conditional dependence structure. The true values of a and b in the conditional form 2 are therefore 1 and
0 respectively.

Distributions D2 and D3. TNrm: Multivariate distribution with Normal dependence transformed marginally
to standard Gumbel

(X,Y ) = − log(− log(ΦΣ(XN , YN )))

where (XN , YN ) is a bivariate random variable, (XN , YN ) ∼ N(0,Σ), Σ11 = Σ22 = 1, Σ12 = Σ21 = ρ and
ΦΣ is the cumulative distribution function of N(0,Σ). Conditionally, (YN |XN = xN ) ∼ N(ρxN , (1 − ρ2)),
so that simulations from this bivariate distribution are straight forward. X and Y have standard Gumbel
marginals, and are dependent (unless ρ=0). Further (Heffernan and Tawn 2004), η = (1 + ρ)/2, so that
the distribution is asymptotically independent (since η 6= 1 unless ρ=1). Conditionally, (Y |X = x) =
ρ2x+x1/2Z for large x, so the distribution is asymptotically conditionally dependent. The value of ρ affects
the conditional dependence structure. The true values of a and b in the conditional form 2 are ρ2 and 0.5
respectively.

For distribution D2, we set ρ to 0.9 corresponding to strong conditional dependence, and for distribution
D3, we set ρ to 0.5.

Distribution D4. AC: Asymptotic conditional form

We define this bivariate distribution directly in terms of the marginal of the conditioning variate X,
taken to be standard Gumbel, and the conditional distribution of Y |X = x, taken to follow the form
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(Y |X = x) = ax+ xbZ with a=0.5, b=0.25 and Z ∼ N(0, 1). The true values of a and b in the conditional
form 2 are therefore 0.5 and 0.25 respectively. Given that X is Gumbel-distributed, the conditioned variate
is only asymptotically Gumbel-distributed. So that Y also be Gumbel-distributed, we replace its values with
a random sample from a standard Gumbel distribution such that rank order of values is preserved.

A key modelling step remains estimation of marginal distributions for X and Y . We transform simulated
samples to generalised Pareto marginals with (shape, scale, threshold) triplets of (-0.15, 2.0, 7.0) and (-
0.2,1.0,9.0) for X and Y prior to analysis, so that all analysis steps required in practice are also followed
in our evaluation procedure. In particular, we will be able to assess the relative importance of estimating
marginal and conditional models.

The Haver model

The Haver model (from Haver [1985], referred to therein as a conditional model also, but referred to here as
the Haver model), developed explicitly for joint modelling of X(i.e.HS) and Y (i.e.TP ) for large values of X,
assumes that Y |X = x follows a log-normal distribution:

fY |X(y|x) =
1√

2πσ(x)

1

x
exp(− (log x− µ(x))2

2σ2(x)
)

Estimated parameters µ(x) and σ(x) from log-normal fits are regressed on x, facilitating extrapolations
to larger x (beyond the sample). Haver recommends functional forms µ = ζ1(x+ 1)−2 + ζ2 loge(x+ 1) + ζ3
and σ = ζ4x

ζ5 , based on goodness of fit in his applications. No further justification for these functional forms
is claimed, particularly for extrapolation for large x. In the original work, a Weibull model for X over a
suitably large threshold, was also estimated. Here, for simplicity and fair comparison, the marginal model for
X is assumed GP. Further, during simulation experiments it was found by inspection of diagnostics that the
functional form ζ1x

−2 + ζ2 was adequate for describing variation of log-normal parameter estimates within
the body of the sample; this form was adopted to describe both µ(x) and σ(x), although no claims are made
about the relevance of this form for extrapolation.

Model assessment with known margins

To assess conditional model performance and compare with the Haver model, 100 realisations of samples of
size 1000 from the four distributions are simulated and modelled. Quality of fit is evaluated for estimates of
return value Y10, defined as follows: (1) Consider the most probable return value corresponding to a sample
10-times the size of the actual sample, referred to as X10. We quantify the distribution of the value of Y
(namely Y10) associated with X10. We summarise the distribution of Y10 in terms of estimates for its three
quartiles: median, 25th and 75th percentiles. To emphasise the difference between the true and estimated
values of these quartiles, we report results in terms of the bias (known value minus estimate) for each quartile.
Thus, in Table 1, q(0.25) is the bias of the 25th percentile of Y10, and q(0.50) is the bias of the median value of
Y10. For each of the 100 realisations of data, the estimated bias will vary. We summarise the distribution of
biases q(0.25), q(0.50) and q(0.75) in terms of their median, 25th and 75th percentiles. Thus, for distribution
D2 using the conditional model, the median values of q(0.25), q(0.50) and q(0.75) are respectively 0.04, 0.00
and -0.01 to two decimal places. For the Haver model, the corresponding values are -0.84, -0.71 and -0.53.
For distribution D2 using the conditional model, bias q(0.50) has an inter-quartile range (-0.06, 0.07). For
the conditional model only, we compare (see Table 1(c)) known and estimated values for parameters a (and
b). Defining biases q(0.25), q(0.50) and q(0.75) as difference between known and estimated values of the 25th
percentile, median and 75th percentile of a (and b), distributions of biases are summarised in terms of their
median and inter-quartile ranges estimated from 100 sample realisations for each distribution. Thus, the
median value for bias q(0.50) of a is 0.07 for distribution D3, with an inter-quartile range of (0.00,0.17). Note
that the marginal distribution of the conditioning variate X is assumed known in this part of the study. A
non-exceedance probability threshold of 0.9 (on the conditioning variate) was used for conditional modelling
(that is, retaining only the largest 10% of sample values).

The Haver model was applied as follows. Values of X and Y corresponding to the largest 20% of values
of conditioning variate X were sorted by increasing value of X and partitioned into 10 sub-samples of size
20. For each sub-sample, the range of values of X was regarded as being sufficiently small that constant
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values of log-normal parameters µ and σ would be appropriate. The log-normal model was applied to each
sub-sample in turn yielding 10 estimates for µ and σ as a function of (increasing sub-sample median) value
of X, as illustrated in Figures 10 and 11 respectively). The parametric form ζ1x

−2 + ζ2 was then applied
to model each of the log-normal parameters in turn, providing estimates for values of Y associated with
extreme quantiles of X.

From Table 1(a), in all but case D1, the inter-quartile range for bias in quantile estimate includes zero, and

the conditional model performs well in general. Variation in parameter estimates â and b̂ during simulation,
summarised in Table 1(c), is also illustrated in Figure 9. Convex hulls enclose sets corresponding to each of
the four distributions D1-D4. In general, parameter estimates are close to their true values. For distribution
D1, both parameter estimates are biased. This lack of fit is reflected also in the relatively large bias in
estimation of Y10 for this case. Comparing Tables 1(a) and 1(b), the conditional model performs better than
the Haver model for the four cases examined. There is a systematic bias in the quantile estimates from
the Haver model. By choosing a different form for the conditional model, or a different form for modelling
the log-normal parameters as a function of the conditioning variate, bias could almost certainly be reduced.
The point here however is that the Haver model gives no sound basis for selecting appropriate functional
forms for conditional modelling and parameter extrapolation, whereas the current conditional model does.
The models for log-normal mean and standard deviation are illustrated in Figures 10 and 11 for a typical
realisation from distribution D1.

Model assessment with estimated margins

To investigate the influence of marginal model estimation on overall performance of the conditional model,
the simulation study was repeated, now with both marginal model for X and conditional model for Y |X
estimated. A non-exceedance probability threshold of 0.8 was used for marginal modelling, and a non-
exceedance probability threshold of 0.9 for conditional modelling. Goodness of fit is again assessed in terms
of bias of estimated values of Y10. We also compare known and estimated values for parameter a and b.
Median, 25th and 75th percentiles for the sample of bias estimates are given.

Tables 1 and 2 show that estimates for conditional model parameters â and b̂ are relatively insensitive
to estimation of marginal models. Estimation of index parameter b is more difficult than that of the linear
coefficient a when marginal analysis is incorporated. For simulations of large samples (e.g. corresponding
to long return periods) using the conditional model (see Section 3), values of residuals of Z from model
fitting are sampled as a non-parametric estimate for the (unknown) distribution G for Z. It is likely that

a relatively biased estimate b̂ will be compensated by the corresponding sample of residuals of Z during
simulation. Estimated values for â and b̂ are illustrated in Figure 12.

Overall model assessment

To assess the overall performance of the model, including both marginal and conditional estimation, but ex-
cluding threshold choice for marginal and conditional modelling, we use the bootstrap scheme recommended
in Section 5.4 of Heffernan and Tawn [2004]. The uncertainty in conditional model parameters â and b̂ (and
others, for example, that of Y10) is estimated by (1) creating new bootstrap samples using the fitted model
(both marginal and conditional components), (2) fitting the model to the bootstrap samples and estimating

parameters ˆ̂a and
ˆ̂
b, then (3) quantifying the discrepancy of ˆ̂a and

ˆ̂
b with respect to â and b̂, and (4) use this

discrepancy to estimate the likely location of the true parameters a and b (e.g. as explained in Jonathan
and Ewans [2007]). Figure 13 illustrates bootstrap estimates of parameters a and b obtained together with
their true locations, for a typical sample realisation from each of distributions D1-D4, using 100 bootstrap
samples. Figure 13 shows the uncertainty in the pair of parameter estimates (â, b̂) for those typical sample
realisations. If the modelling procedure performs well, we expect the convex hull for a particular sample to
include the true values of parameters. We observe from the figure that bootstrap estimates are adequate in
general, and that difference between the four data sets is less ambiguous in terms of a than b.

In summary, we find (Tables 1 and 2) that the conditional model provides a relatively good characterisa-
tion of the distribution of extreme quantile Y10 for samples of size 1000 from four bivariate distributions for
extremes, whereas the Haver model does not. This finding holds regardless of whether marginal estimation
is included (Table 2) or excluded (Table 1) in the analysis. Conditional model parameter estimates are
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relatively insensitive to inclusion of marginal estimation in the modelling procedure (Figures 11 and 12).
For a given sample realisation, we demonstrate good performance of a bootstrapping procedure (Figure 13)
to quantify uncertainty in conditional model parameter estimates. The conditional model and Haver model
are very similar in that they rely on empirical (marginal and conditional) modelling of sample data for their
success. However, the conditional model structure is supported by asymptotic theory.

5 Applications

The four samples selected as illustrative applications for the conditional model are introduced and illustrated
in Section 2. Marginal GP fits can be achieved with relatively little difficulty for storm peak HS and TP in
each sample, as illustrated in Figures 5-8 for measured NNS data. Following the procedure outlined in Section
3 above, the conditional model (Equation 2) is estimated for peaks over threshold on data transformed to
standard Gumbel marginals.

The adequacy of estimation is illustrated in Figures 14 and 15 for the measured NNS application. Figure
14 shows a scatter plot of residuals {ẑi}ni=1 against values {xi}ni=1 of the conditioning variate. These are not
obviously dependent, but do indicate skewness of the distribution of Z. Figure 15 shows the effect of varying
modelling threshold on estimates â and b̂ for measured NNS data. Again, optimal threshold selection is
rather difficult. Figures 14 and 15 are typical of those obtained for other applications. Based on inspection
of diagnostic plots such as these, it was decided to employ a 60%ile threshold for marginal modelling, and a
70%ile threshold for conditional modelling in all applications.

We are interested specifically in estimating conditional model parameters a and b, the value of the most
probable 100-year storm peak HS , HS100MP and its corresponding peak period, TP |HS100MP

. We assess
uncertainty of these estimates using the bootstrap scheme introduced in section 4 above. Bootstrap convex
hulls based on 100 resamples for each application are illustrated in Figure 16. We observe that bootstrap
convex hulls contain the point estimates (â, b̂) for each application. The large extent of the convex hull for
the NWS hindcast application reflects the small sample size in that case. The figure suggests that the NNS
and GoM measured samples are different to one another with respect to joint extremal characteristics.

Using the conditional model we simulate realisations of exceedences of high thresholds of storm peak HS .
A typical simulation of 100 exceedences of HS100MP for the measured NNS application is given in Figure
17. Using simulation we can estimate the distribution of TP |HS100MP

for a given sample. By incorporating
simulation within a bootstrap scheme, we can also estimate the uncertainties in HS100MP and the distribution
of TP |HS100MP

for a given application. Kernel density estimates for the bootstrap distribution of HS100MP

for the four applications are given in Figure 18, together with point estimates in each case. Figure 19 gives
corresponding estimates for the median value of TP |HS100MP

.
Figures 18 and 19 show good agreement between measured and hindcast estimates for both HS100MP

and median TP |HS100MP
.

6 Conclusions and recommendations

We present an approach to joint modelling of wave climate parameters, well-motivated by extreme value
theory. We demonstrate that the approach performs reasonably in application to simulated, measured and
hindcast data. As with all extreme value analysis, estimation is relatively difficult, and threshold selection
a particular issue. It is essential to demonstrate stability of the model estimates with respect to various
threshold choices made. Equally, it is important to evaluate uncertainty of the modelling procedure using
an approach such as bootstrapping.

The key assumption behind the conditional approach is that of a limit representation (see Heffernan and
Tawn [2004] and discussion on the paper). In our simple bivariate case, this is equivalent to assuming that

the residuals Z = (Y−a(x))
b(x) have the property that:

Pr(Z < z|X = x)→ G(z) as x→∞ (3)

where G is a non-degenerate distribution, for particular choices of normalising functions a(x) and b(x)
identified from the characteristics of the conditional distribution of Y |X = x. This limit form is appropriate
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for all existing multivariate extreme value distributions, and a large class of asymptotically independent
forms. Examples do exist for which the limit representation is inappropriate, e.g. as noted by Smith in
Heffernan and Tawn [2004] or Latham [2006]. However, in comparison, models based on the alternative
assumption of multivariate regular variation are often intractable in practical application.

When simulating samples of sizes many times larger than the original sample used to estimate the
conditional model, the set of estimated residuals {ẑi}ni=1 may be inadequate to characterise the distribution
G of Z, since this set is limited to the size of the original sample. In such cases, modelling G parametrically,
and sampling from the fitted distribution Ĝ may be more appropriate.

The conditional model and Haver model considered here are similar in that they rely on empirical
(marginal and conditional) modelling of sample data for their success. The major advantage of the conditional
model is that its structure is motivated by asymptotic theory. It would be interesting to consider whether
the Haver model (for particular choices of functional forms for log-normal parameters) could be represented
as a special case of the conditional approach. For example, the first and second moments of the conditional
model (Equation 2) are given by E(Y |X = x) = ax + xbµZ and var(Y |X = x) = x2bσ2

Z , where µZ and
σ2
Z are the mean and variance of Z respectively. Standard results for the log-normal distribution yield

expressions E(Y |X = x) = µ(x)ω1/2(x) and var(Y |X = x) = µ2(x)ω(x)(ω(x)− 1), where ω(x) = expσ2(x).
Judicious choices of parametric forms µ(x) and σ(x) might yield reasonable agreement between corresponding
expressions for these moments (at least), possibly motivating a modified form of Haver model with improved
asymptotic behaviour.

In this paper we have examined bivariate extremes only, however the conditional model is applicable in
higher dimensions. Multivariate extreme value analysis concerns the characterisation, estimation and extrap-
olation of the joint tails of multi-dimensional distributions, and has a general relevance to meteorological-
oceanographic study, far beyond the joint estimation of wave climate parameters. For example, we might
wish to estimate wave climate at multiple locations in a neighbourhood, or extreme currents over a range of
water depth; these require that spatial dependence of extreme values be considered carefully. The conditional
model would appear to be well-suited for general application. It has become popular in recent times to use
dimensionality reduction techniques such as empirical orthogonal function analysis (or principal components
analysis) first to reduce the dimensionality of multivariate samples, applying extreme value analysis to data
projected (for example) onto leading principal components (for example, Forristall and Cooper 1997). This
approach does not model the joint extremal characteristics of the sample. The conditional model provides a
promising alternative.

The following procedure is appropriate to apply the conditional model to bivariate extremes (see also the
model outline in section 3).

1. Modelling fitting:

(a) Fit marginal GP models to the sample data for each variable in turn. Plot the values of model
parameter estimates as a function of threshold. Select appropriate threshold values per variable
corresponding to approximately stable models.

(b) Transform each variable in turn to Gumbell scale using the fitted GP model.

(c) Fit the conditional model, conditioning on each variable in turn assuming the limiting distribution
G to be Gaussian. Retain the estimated model parameters and residuals. Plot the values of model
parameter estimates as a function of threshold for the conditioning variable. Select appropriate
threshold values corresponding to approximately stable models.

(d) Perform diagnostic checks on model adequacy. In particular, confirm that model residuals are
approximately independent of the value of conditioning variate.

2. Simulation:

(a) Simulate multiple realisations of samples corresponding to desired return periods (from one or
both conditional models as appropriate) from the fitted conditional model.

(b) Transform simulated values back to their original scales using the fitted marginal GP models.

(c) Estimate quantities of interest, such as the median value of the conditioned variable given a value
(or an interval of values) for the conditioning variate, directly from the simulated samples.

9



The conditional approach provides a basis for direct simulation, not only of joint extremes (of HS and
TP in this case) but also of functions of the variables such as wave steepness and Ursell number. Indeed,
in certain circumstances it may be useful to model (e.g.) HS and wave steepness directly rather that HS

and TP . It may also be appropriate to consider transformations of variable scale (Teugels and Vanroelen
2004). From a structural design perspective, it is possible to compare joint met-ocean conditions generated
using a structural-response-based approach with those estimated from explicit modelling of joint met-ocean
conditions. It may also prove useful basis for estimation of joint distributions in the context of reliability
models such as FORM and I-FORM (see, e.g. Winterstein et al. 1993).

Consideration of covariate effects is also important in extreme value analysis of metocean variables (e.g.
Jonathan et al. [2008]; accommodation of covariate effects by variable transformation (e.g. Eastoe and Tawn
[2009]) is possible. Distributions of wave climate variables can often be partitioned according to the physical
processes generating them, for example, into wind-sea and swell. The conditional model can be applied to
model joint extremes of wind-sea and swell wave climate parameters. These could then be extended to define
multimodal design spectra, including directionality.

Three threshold choices are necessary to estimate the conditional model in Section 5, namely a threshold
to model X marginally, Y marginally and to model Y |X. Initial investigations suggest that marginal and
conditional models are relatively stable with respect to small changes in threshold choices made. However, it
would be interesting to examine more thoroughly the manner in which marginal and conditional estimation
interact as a function of threshold choice, and how (in the context of 5) estimates for both HS100MP and
median TP |HS100MP

vary with choice of the triplet of thresholds. A further extension of the current work
would be to calculate coverage probabilities for bootstrap estimates for conditional and marginal model
parameters and extreme quantiles for given threshold selections.
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8 Appendix

The following is an informal overview of some concepts in multivariate extreme value analysis used in the
paper. The bivariate random variable (X,Y ) is said to be asymptotically independent if limx→∞Pr(X >
x|Y > x) = 0 and asymptotically dependent if limx→∞Pr(X > x|Y > x) > 0. In multivariate extreme value
analysis it is usual to consider the properties of quantities such as the joint survivor function Pr(XF >
f, YF > f), and the conditional probability Pr(XF > f |YF > f), for large f .

Let (XF , YF ) be a bivariate random variable with unit Frechet marginal distributions (i.e. Pr(XF < f) =

e−
1
f ). In the special case that XF and YF are independent, then Pr(XF > f |YF > f) = Pr(XF > f) → 0

as f →∞. Hence XF and YF and also asymptotically independent. In the special case that XF = YF , then
Pr(XF > f |YF > f) = 1 so that XF and YF are asymptotically dependent. In general, we assume that
Pr(XF > f, YF > f) is regularly varying at infinity with index − 1

η , η ∈ (0, 1] (see Bingham et al. 1987).
That is:

limf→∞
Pr(XF > sf, YF > sf)

Pr(XF > f, YF > f)
= s−

1
η for some fixed s > 0 (4)

For sufficiently large values of f , equation 4 suggests Pr(XF > sf, YF > sf) ≈ s−
1
ηPr(XF > f, YF > f).

If we further transform variables from Frechet ((XF , YF )) to Gumbel ((XF , YF )) marginal distributions, such
that Pr(XG < g) = exp(−e−g) (= Pr(XF < eg)), we obtain for t > 0:

Pr(XG > g + t, YG > g + t) = Pr(XF > eg+t, YF > eg+t)

≈ e−
t
ηPr(XF > eg, YF > eg)

= e−
t
ηPr(XG > g, YG > g)
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The index η provides a measure of the dependence between the marginal tails, effectively the rate of
decay of the joint survivor function for large arguments. It is clear, if we approach multivariate extreme
value modelling from the perspective of multivariate regular variation, that estimation η is important.

Ledford and Tawn [1996]) introduce the model Pr(XF > f, YF > f) = `(f)f−
1
η where `(f) is a slowly-

varying function (i.e. limf→∞
`(sf)
`(f) = 1), applicable to a broad range of distributions with unit Frechet

marginal variables, with η referred to as the coefficient of tail dependence. Under this model:

Pr(XF > f |YF > f) =
Pr(XF > f, YF > f)

Pr(YF > f)

= `(f)f−
1
η (1− e−

1
f )

∼ `(f)f1− 1
η

∼ `(f)Pr(YF > f)1− 1
η

Thus at η = 1 (and `(f) 6= 0), XF and YF are asymptotically dependent. Otherwise, for η < 1 (or η = 1
and limf→∞`(f) = 0), XF and YF are asymptotically independent.

In practice, η can be estimated by noting, for the minimum LF of XF and YF , that Pr(LF > f) =

Pr(XF > f, YF > f) = `(f)f−
1
η . Hence, conditionally:

Pr(LF > f + s|LF > f) =
`(f + s)

`(f)
(1 +

s

f
)−

1
η

∼ (1 +
s

f
)−

1
η for large f

The final expression is in generalised Pareto (GP) form; the shape parameter from a GP fit to LF (with
threshold f) yields an estimate for η.

Ledford and Tawn [1997] introduce a more flexible asymptotic form for the joint survivor function.
For modelling purposes, this reduces to assuming Pr(XF > xF , YF > yF ) ≈ `(xF , yF )x−cXF y−cYF , where
cX + cY = 1

η with non-negative xF , yF again simultaneously large. Now `(xF , yF ) is a bivariate slowly

varying function with limit φ(xF , yF ) (i.e. limf→∞
`(fxF ,fyF )
`(f,f) = φ(xF , yF ), and φ(fxF , fyF ) = φ(xF , yF )

for all f > 0 ). Under this model, equation 1 emerges:

Pr(XG > xG + t, YG > yG + t) = Pr(XF > exG+t, YF > exG+t)

≈ `(exGet, eyGet)e−t(cX+cY )e−xGcXy−yGcYF

=
`(exGet, eyGet)

`(exG , eyG)
e−

t
η (`(exG , eyG)e−xGcXy−yGcYF )

≈ e−
t
ηPr(XF > exG , YF > exG) for large xG and yG

= e−
t
ηPr(XG > xG, YG > xG)

The conditional model (see section 3) does not assume multivariate regular variation. Instead, a limit
assumption is made (see section 6). There is no need to consider the coefficient of tail dependence when using
the conditional model. Nevertheless, to understand the conditional model in the context of other approaches
to multivariate extreme value analysis, it is useful to explore its performance for samples from multivariate
distributions with different coefficients of tail dependence (see section 4).
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Figure 1: Storm peak values of TP versus HS for measured NNS storm peak data.
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Figure 2: Storm peak values of TP versus HS for hindcast NNS storm peak data.
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Figure 3: Storm peak values of TP versus HS for measured GoM storm peak data.
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Figure 4: Storm peak values of TP versus HS for hindcast NWS storm peak data.
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Figure 5: Quantile-quantile plot for GP fit to measured NNS storm peak HS with a threshold non-exceedence
probability of 0.6 for modelling, and estimated parameters ξ̂=-0.11, β̂=1.5. Only points with non-exceedence
probabilities >0.9 shown.
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Figure 6: Quantile-quantile plot for GP fit to measured NNS storm peak TP with a threshold non-exceedence
probability of 0.6 for modelling, and estimated parameters ξ̂=-0.19, β̂=2.0. Only points with non-exceedence
probabilities >0.9 shown.

8



Figure 7: Variation of GP shape estimate ξ̂ with threshold for measured NNS storm peak HS (dots) and TP
(circles).
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Figure 8: Variation of GP scale estimate β̂ with threshold for measured NNS storm peak HS (dots) and TP
(circles).
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Figure 9: Variation in parameter estimates â and b̂ during simulation, assuming marginals known, cor-
responding to results in Table 1. Convex hulls enclose pairs corresponding to distribution D1 (circles),
D2(dots), D3(squares) and D4(crosses). Location of true values indicated using numbers 1-4.
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Figure 10: Extrapolation of log-normal mean parameter µ, for a typical realisation of data. Estimated values
from the sample (circles joined by solid lines), log-normal fit (dashed line) and estimated extrapolated value
for µ (dot)
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Figure 11: Extrapolation of log-normal standard deviation parameter σ, for a typical realisation of data.
Estimated values from the sample (circles joined by solid lines), log-normal fit (dashed line) and estimated
extrapolated value for σ (dot)
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Figure 12: Variation in parameter estimates â and b̂ during simulation, with marginal estimation, correspond-
ing to results in Table 2. Convex hulls enclose pairs corresponding to distribution D1 (circles), D2(dots),
D3(squares) and D4(crosses). Location of true values indicated using numbers 1-4.
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Figure 13: Bootstrap convex hulls for conditional parameters a and b corresponding to typical realisations
from distributions D1-D4. Convex hulls enclose pairs corresponding to distribution D1 (circles), D2(dots),
D3(squares) and D4(crosses). Location of true values indicated using numbers 1-4.
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Figure 14: Plot of residuals {ẑi}ni=1 against values {xi}ni=1 of conditioning variate, for the measured NNS
sample
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Figure 15: Variation of conditional model parameter estimates â (dots) and b̂ (circles) with threshold for
conditional modelling, for the measured NNS sample
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Figure 16: Point and bootstrap convex hull estimates for conditional model parameters a and b for the four
applications. Point estimates (A-D) and bootstrap convex hulls shown corresponding to the measured NNS
sample (A, circles), the NNS hindcast sample (B, dots), the measured GoM sample (C, squares), and the
NWS hindcast (D, crosses).
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Figure 17: Illustrative simulation from conditional model for measured NNS application, for exceedences of
HS10 (shown as a vertical line at 14.9m).
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Figure 18: Point and kernel density estimates for the bootstrap distribution of extreme quantile HS100MP

for each of the four applications: measured NNS (A, solid), hindcast NNS (B, dashed), measured GoM (C,
dotted) and hindcast NWS (D, dashed-dotted).
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Figure 19: Point and kernel density estimates for the bootstrap distribution of extreme quantile TP |HS100MP

for each of the four applications: measured NNS (A, solid), hindcast NNS (B, dashed), measured GoM (C,
dotted) and hindcast NWS (D, dashed-dotted).
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Table 1: Estimation when marginal models assumed known: bias in estimates for Y10 from (a) the conditional
model and (b) the Haver model; (c) estimated bias of parameter estimates for conditional model (see equation
1; true values for parameters given with data description in first column).
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Table 2: Estimation when marginal models are estimated: bias in extreme quantile estimates for Y10 from
(a) the conditional model and (b) the Haver model; (c) estimated bias of parameter estimates for conditional
model (see equation 1; true values for parameters given with data description in first column).
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